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Simulations suggest collisionless steady-state magnetic reconnection of Harris-type current sheets
proceeds with a rate of order 0.1, independent of dissipation mechanism. We argue this long-
standing puzzle is a result of constraints at the magnetohydrodynamic (MHD) scale. We predict
the reconnection rate as a function of the opening angle made by the upstream magnetic fields,
finding a maximum reconnection rate close to 0.2. The predictions compare favorably to particle-
in-cell simulations of relativistic electron-positron and non-relativistic electron-proton reconnection.
The fact that simulated reconnection rates are close to the predicted maximum suggests reconnection
proceeds near the most efficient state allowed at the MHD-scale. The rate near the maximum is
relatively insensitive to the opening angle, potentially explaining why reconnection has a similar
fast rate in differing models.

PACS numbers: 52.35.Vd, 94.30.cp, 96.60.Iv

Introduction– A significant amount of magnetic energy
is released in solar and stellar flares [1–3], substorms in
magnetotails of Earth and other planets [4, 5], disrup-
tions and the sawtooth crash in magnetically confined
fusion devices [6], laboratory experiments [7], and nu-
merous high energy astrophysical systems [8, 9]. Mag-
netic reconnection, where a change in topology of the
magnetic field allows a rapid release of magnetic energy
into thermal and kinetic energy, is a likely cause. The
reconnection electric field parallel to the X-line (where
magnetic field lines break) not only determines the rate
that reconnection proceeds, but can also be crucial for
accelerating energetic super-thermal particles. It was es-
timated that a normalized reconnection rate of ' 0.1 is
required to explain time scales of flares and substorms
[10].

Reconnection rates have been studied observationally,
experimentally, theoretically, and numerically. Measure-
ments can be in situ, such as in the magnetosphere and
lab, or remote, as in solar and astrophysical contexts.
Reconnection rates from these different vantage points
can be the same but need not be; for example, flux ropes
in the corona have macroscopic forces that can influence
the evolution of current sheets where reconnection oc-
curs. Therefore, it is important to distinguish between
system scales. We define global-scale as system-size scale
of magnetic domains. The local-scale is a smaller MHD-
scale region where the magnetic field and plasma param-
eters achieve relatively uniform conditions upstream of
the diffusion region. The micro-scale is the scale of the
diffusion region, which for collisionless reconnection is the
ion diffusion region and below. Here we focus on recon-
nection rates at the local- and micro-scales; coupling to
global scales is beyond the scope of this paper.

The original model for the local reconnection rate was

the Sweet-Parker model [11, 12], but it was too slow to
explain observed time scales of flares and substorms [13].
The collisional diffusion region is long and thin (i.e., the
upstream magnetic fields have a small opening angle),
developing a bottleneck that keeps the inflow speed small.
The Petschek model [14] was much faster because it had
an open outflow region (i.e., a larger opening angle), but
is not a self-consistent model [15, 16].

The collisionless limit is more appropriate for many
systems of interest. Two-dimensional (2D) local simula-
tions of isolated, thin, Harris-type current sheets reveal
that the steady-state reconnection has a fast rate of 0.1
[17] when normalized by the magnetic field and Alfvén
speed at the local-scale. This rate is independent of sim-
ulated electron mass [18, 19] and system size [17, 19]. In
particular, the GEM challenge study [20] showed that the
rate is comparable in Hall-MHD, hybrid, and particle-in-
cell (PIC) simulations. Consequently, it was argued that
the Hall term, the minimal non-ideal-MHD term in all
three models, is the key physics for producing the fast
rate [21, 22]. However, further studies have raised im-
portant questions. One gets similar fast rates in electron-
positron plasmas, for which the Hall term vanishes [23–
25], and in the strong out-of-plane (guide) magnetic field
regime [26–29] for which the Hall term is inactive. Even
within resistive-MHD, the same 0.1 rate arises when a
localized resistivity is employed [16]. This evidence calls
into question whether the Hall term is the critical effect.
It was suggested that the appearance of secondary is-
lands could provide a universal mechanism for limiting
the length of the diffusion region [24, 26], but this model
is also not satisfying since the same rate is obtained even
when islands are absent [22, 30].

In situ magnetospheric observations reveal (local) re-
connection rates near 0.1 [31, 32]. Solar observations
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suggest (global) reconnection rates can be this high as
well [33–35], or somewhat lower [36, 37]. Therefore, ob-
servations suggest the local rate is 0.1, and the global rate
can be at or below 0.1. This also has numerical support;
in island coalescence, the global rate can be lower than
0.1 [38–40], while the local rate remains close to 0.1 [38].

What causes the local reconnection rate to be ∼ 0.1
across different systems remains an open question [e.g.,
Ref. [41]]. In this paper, we offer a new approach to
this long-standing problem. We propose that the local
rate has a maximum as a result of constraints at MHD
scales (rather than physics at the diffusion-region-scale
as is typically discussed). We perform an analysis to de-
rive the maximum local rate for low-β plasmas, which we
find is O(0.1). The fact that local simulations produce
rates close to this maximum value suggests that steady
reconnection proceeds at a rate nearly as fast as possi-
ble. We show the predictions are consistent with PIC
simulations of a relativistic electron-positron plasma and
a non-relativistic electron-proton plasma. In this study,
we restrict our attention to anti-parallel reconnection for
simplicity.

Simple model– Let the thickness and length of the
(micro-scale) diffusion region be δ and L, respectively.
For collisionless reconnection, δ is controlled by inertial
or gyro-radius scales [42]. If the opening angle made by
the upstream magnetic field is small, the diffusion region
is long and thin. Reconnection in this case is very slow,
as in Sweet-Parker reconnection [11, 12]. As the open-
ing angle increases, reconnection becomes faster. This
is true to a point, but cannot continue for all angles for
two reasons. First, in order to satisfy force balance, the
upstream region develops structures over a larger scale,
as in the classical Petschek-type analyses [14, 43]; this is
what we define as the local-scale. Since the diffusion re-
gion thickness continues to be controlled by micro-scales,
the diffusion region becomes embedded in a wider struc-
ture [42, 44, 45] of local-scale ∆z, where the magnetic
field and plasma parameters achieve relatively uniform
upstream conditions. The magnetic field Bxm immedi-
ately upstream of the diffusion region becomes smaller
than the asymptotic magnetic field Bx0. (The subscript
“0” indicates asymptotic quantities at the local-scale and
“m” indicates quantities at the micro-scale.) This is cru-
cial because it is Bxm that drives the outflow from the
diffusion region; as it becomes smaller, reconnection pro-
ceeds more slowly.

The second reason reconnection does not become faster
without bound is that the J×B force of the reconnected
field becomes smaller as the opening angle increases [46].
In the limit where the separatrices are at a right angle,
the tension force driving the outflow is canceled by the
magnetic pressure force, so reconnection does not occur.

These observations suggest the following: the recon-
nection rate has a maximal value for an intermediate
opening angle which is large enough to avoid the bot-
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FIG. 1: (a) Sketch of magnetic field lines upstream of the
diffusion region (z > 0). (b) Geometry of reconnection at
the local-scale. (c) Dimensions of the diffusion region at the
micro-scale.

tleneck for extremely thin current layers, but is not too
large to weaken the reconnection drive. We present an
analysis simply capturing these main aspects using only
the reconnection geometry and force balance. We con-
sider low-β systems in the relativistic limit; a more gen-
eral derivation should be future work.

The inflow region is illustrated in Fig. 1(a). With the
diffusion region at the micro-scale, the asymptotic (lo-
cal) magnetic field (at the top) must bend as it weak-
ens toward the diffusion region (at the bottom). In the
β � 1 limit, thermal pressure is negligible, so to remain
near equilibrium the inward-directed magnetic pressure
gradient force −(∇B2/8π)z must be almost perfectly bal-
anced by outward-directed magnetic tension B ·∇Bz/4π.
Evaluating these at point 1 marked in Fig. 1(b) gives

B2
x0 −B2

xm

8π∆z
'
(
Bx0 +Bxm

2

)
2Bzh

4π∆x
, (1)

where Bzh is evaluated at the upstream field line near
the separatrix. (Note that the inertia of the inflowing
plasmas can be included in Eq.(1) using Vz = cEy/Bx,
but its effect is negligible.)

We make the reasonable assumption the opening an-
gle made by the upstream field at the local-scale, θ ≡
tan−1(∆z/∆x), matches the opening angle of the micro-
scale field at the corner of the ion diffusion region,
φ ≡ tan−1(Bzm/Bxm). Then, from geometry, we get
Bzh/[(Bx0 +Bxm)/2] ' ∆z/∆x ' Bzm/Bxm. Eliminat-
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ing Bzh and solving for Bxm/Bx0 gives

Bxm

Bx0
' 1− (∆z/∆x)2

1 + (∆z/∆x)2
. (2)

For small opening angles, Bxm ' Bx0; for large opening
angles approaching 45◦, Bxm � Bx0, and embedding is
significant.

To estimate the outflow speed, we employ force bal-
ance in the x-direction at point 2 in Fig. 1(c). In
the relativistic limit [47], n′miU

2
out/2L + B2

zm/8πL '
(Bzm/2)2(Bxm/2)/4πδ, where n′ is the density measured
in the fluid rest frame, mi is the ion mass, Uout is the
x-component of the 4-velocity. Note that we have as-
sumed that the profile of plasma pressure in the outflow
direction is nearly uniform, as has been done in pre-
vious analyses [48], so that the pressure gradient force
is small compared to the magnetic tension force. The
outflow speed Vout,m from the end of the diffusion re-
gion is related to Uout through Uout = γoutVout,m =
Vout,m/(1 − V 2

out,m/c
2)1/2, where γout is the relativistic

factor. Since the separatrix goes through the corner of
the diffusion region, Bzm/Bxm ' δ/L. Solving for the
outflow speed as a function of δ/L gives

Vout,m ' c
√

(1− δ2/L2)σxm
1 + (1− δ2/L2)σxm

, (3)

where the magnetization parameter evaluated near the
diffusion region is σxm = B2

xm/4πn
′mic

2. Consequently,
if δ/L � 1, then Vout,m ∼ VAm as expected since
the Alfvén speed in the relativistic limit [49] is VAm =
c[σxm/(1 + σxm)]0.5. However, as δ/L → 1, the outflow
speed → 0 [46].

Putting the results together yields a prediction for
the normalized local rate. The reconnection electric
field Ey is BzmVout,m/c. The reconnection rate R0 ≡
cEy/Bx0VA0 normalized to local quantities is

R0 '
(
Bzm

Bxm

)(
Bxm

Bx0

)(
Vout,m
VA0

)
. (4)

The rate normalized to the micro-scale magnetic field and
Alfvén speed is Rm ' (Bzm/Bxm)(Vout,m/VAm), and the
micro-scale inflow speed is Vin,m ' RmVAm.

Writing Eqs. (2) and (3) as functions of ∆z/∆x and
substituting into Eq. (4) gives the predicted local rate.
In the non-relativistic limit (σx0 � 1), the rate is

R0,NR '
∆z

∆x

[
1− (∆z/∆x)2

1 + (∆z/∆x)2

]2√
1−

(
∆z

∆x

)2

, (5)

which is plotted as the solid curve in Fig. 2(a). This
expression generalizes the previously known result [11,
12, 46] of R0,NR ' ∆z/∆x ' δ/L for small opening
angles. In the ∆z/∆x → 0 and ∆z/∆x → 1 limits,
R0,NR vanishes. Between the two extremes, R0,NR has
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FIG. 2: Predictions for the non-relativistic limit as functions
of (a) ∆z/∆x and (b) Bxm/Bx0. (c) Predictions for relativis-
tic limit (σx0 = 89).

a maximum, conforming to the discussion earlier. The
maximum occurs at ∆z/∆x ' 0.31 corresponding to a
rate of 0.2, close to the fast rate of order 0.1 widely ob-
served. More importantly, the local rate is relatively flat
for a broad range of ∆z/∆x around the optimal value,
suggesting that the rate is not strongly sensitive to the
opening angle for intermediate values. This may explain
why reconnection rates in disparate physical systems are
so similar.

The dotted curve in Fig. 2(a) shows the non-relativistic
prediction if Vout,m is taken to be identically VAm in
Eq. (4). This comparison indicates that the correction to
the outflow speed in Eq. (3) does not significantly alter
R0, although it does impact Rm as ∆z/∆x approaches
1. Thus, the most significant effect limiting the local rate
with a increasing opening angle is the embedding. We
plot R0, Rm and Vin,m/c in Fig. 2(b) as functions of
Bxm/Bx0 to facilitate a comparison with simulations. A
similar plot is shown in Fig. 2(c) for the relativistic limit,
specifically with σx0 = 89. The peak R0 is 0.3, and it
does not change with increasing σx0. This bounds rates
seen in relativistic simulations [45, 50–53].

We point out that there are similarities between the
present model and the classical Petschek model [14].
However, there are a number of important differences.
For example, the Petschek model assumes a value of
0.5 for what we call Bxm/Bx0, whereas we estimate it
self-consistently. Furthermore, the way Petschek ob-
tained the upstream condition, strictly speaking, only
works for the small opening angle limit, while our re-
sult is valid for any opening angle. Finally, and most
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FIG. 3: Local-scale structure around the X-line in electron-
positron reconnection with σx0 = 89 at t = 600/ωpi. (a) Viz

and its cut at x = 0. (b) |Bx| and a cut of Bx at x = 0. The
amplitude of Bxm is marked by the red dashed line, where
the frozen-in condition Ey + (Vi × B)y/c = 0 is violated.
Contours of in-plane magnetic flux are overlaid. The color
table in (b) has an upper limit Bx0.

importantly, the weak dependence on reconnection rate
reported by Petschek has a logarithmic dependence on
Lundquist number, so the normalized reconnection rate
is not bounded by 0 and 1 as it must be on physical
grounds. In the present work, the reconnection rate is
manifestly bounded between 0 and 1.

Comparison to particle-in-cell simulations– We com-
pare the predictions against PIC simulations of a rel-
ativistic electron-positron plasma (i.e., mi = me) in
Ref. [45]. The upstream magnetization parameter σx0 =
89 and β = 0.005. The diffusion region is embedded, as
is clearly seen in Fig. 3 which shows the inflow veloc-
ity Viz and reconnecting magnetic field Bx with in-plane
magnetic flux overlaid at time t = 600/ωpi. A vertical
cut through the X-line of these quantities is also shown.
Immediately upstream of the diffusion region of di-scale
thickness, |Viz| peaks at ' 0.65c and |Bx|/Bx0 drops to
' 0.2 (di = c/ωpi is the ion inertial scale). The variation
of the magnetic structure extends & 100di upstream, and
the separatrix has an opening angle wider than typically
seen in the non-relativistic regime with β ∼ O(1) (e.g.,
[18]). It was shown in Ref. [45] that the magnetic pres-
sure gradient balances magnetic tension in the upstream
region, as expected for this low-β system.

The time evolution of reconnection rates are plotted in
Fig. 4, along with the micro-scale inflow speed Vin,m and
the ratio of magnetic fields Bxm/Bx0. Before a quasi-
steady state is reached, both Rm and R0 increase as
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FIG. 4: Time evolution of the measured local reconnection
rateR0, micro-scale rate Rm, micro-scale inflow speed Vin,m/c
and Bxm/Bx0. The blue circle marks the deviation of Rm

from R0. The orange vertical line marks the time plotted in
Fig. 3.

the simulation progresses. The deviation of Rm from
R0 occurs at time t ' 250/ωpi and Bxm/Bx0 ' 0.8. R0

reaches a plateau of ' 0.15 at t & 300/ωpi while Rm

continues to grow and Bxm/Bx0 continues to drop. Note
that, R0 ' 0.15 is reached before the generation of sec-
ondary tearing modes at t ' 500/ωpi, indicating that
R0 is not determined by secondary islands. Rm eventu-
ally reaches a plateau of ' 0.6 and Bxm/Bx0 drops to
' 0.22 at t & 600/ωpi. The inflow speed Vin,m traces
Rm because VAm ' c. We compare the steady-state val-
ues to the prediction shown in Fig. 2(c). Substituting
the measured Bxm/Bx0 ' 0.22 into the predictions gives
R0 ' 0.14, Rm ' 0.69, Vin,m ' 0.62c and an opening
angle θ ' 38.7◦ [illustrated by the dashed green line in
Fig. 3(a)]. Given the simplicity of this model, this agree-
ment is quite remarkable.

To test the predictions against non-relativistic
electron-proton reconnection, we compare with a low-β
PIC simulation in Ref. [54], which used mi/me = 25 and
a background density 1% of the sheet density. The up-
stream β = 0.01. From that reference, R0 ' 0.085 and
Rm ' 0.22 with Bxm/Bx0 ' 0.55. The predictions in
Fig. 2(b) based on Bxm/Bx0 ' 0.55 are roughly twice
these values, mainly because of an overestimation of the
outflow speed. However, it is common for electron-proton
plasmas to have outflow speeds about half of the Alfvén
speed [54]; this is likely due to a self-generated firehose-
sense temperature anisotropy in reconnection exhausts,
which reduces the outflow speed (e.g., [55, 56]) but is
not considered in the current model. Adjusting for this
factor of two, the predictions agree quite well with the
simulations. The predicted opening angle ∼ 28.8◦ purely
based on the upstream constraint in Eq. (2) agrees well.

Discussion– The model presented here is completely
independent of dissipation mechanism. The only ingre-
dients are MHD-scale considerations and that the dif-
fusion region remains at micro-scales when the opening
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angle increases. The fact that the simulated fast rates
in disparate physical models are all similar to the pre-
dicted maximum rate of order 0.1 suggests that MHD-
scale constraints on magnetic energy release determine
the fast rate. The obvious counterpoint to this is re-
connection in MHD simulations with a uniform resistiv-
ity, which does not proceed at this rate. Even when the
Lundquist number is large enough to produce magnetic
islands [15, 57], the reconnection rate is an order of mag-
nitude smaller [58–60]. This indicates that considerations
at MHD scales are not sufficient to explain fast reconnec-
tion; the micro-scale dissipation/localization mechanism
must be able to support the desired opening angle at the
local-scale. However, if the diffusion region can support
a larger opening angle, the local rate of order ∼ O(0.1)
is not strongly sensitive to the opening angle over a wide
range of values. The micro-scale rate Rm is sensitive to
the opening angle, resulting in the large difference be-
tween Rm and R0 observed in the relativistic limit [45].

The present model is not complete in that it does not
include some physics that may affect the reconnection
rate. As discussed earlier, the self-generated pressure
anisotropy in the exhaust can reduce the outflow speed
[55, 56]. The plasma pressure gradient force in the
outflow direction can also affect the outflow speed
[26, 54, 61]. Self-generated upstream temperature
anisotropies [62] may modify the embedding. Relaxing
the low-β assumption is important. However, we note
that the reduction of Bxm also occurs in simulations
with β ∼ O(1) in Ref. [54]. This model does not take
into account the conversion of upstream energy into heat
and accelerated particles, which undoubtedly impacts
the energy conversion process and is important in main-
taining the intense current sheet during reconnection
[46, 63]. It also did not include the presence of an
out-of-plane (guide) magnetic field, which will be the
topic of future study. Finally, while this model is likely
to apply to 3D reconnection that is quasi-2D, we do
not take fully 3D systems or localized reconnection
into account. Nevertheless, this simple model offers a
new approach to the long-standing fast reconnection
rate problem, which is broadly relevant in basic plasma
physics, fusion science, solar and space physics, and
astrophysics, and potentially provides an avenue for
understanding the important link between the micro-
and global-scales.
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