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We investigate the mechanical response of thin sheets perforated with a square array of mutually
orthogonal cuts, which leaves a network of squares connected by small ligaments. Our combined
analytical, experimental and numerical results indicate that under uniaxial tension the ligaments
buckle out-of-plane, inducing the formation of 3D patterns whose morphology is controlled by the
load direction. We also find that by largely stretching the buckled perforated sheets, plastic strains
develop in the ligaments. This gives rise to the formation of kirigami sheets comprising periodic
distribution of cuts and permanent folds. As such, the proposed buckling-induced pop-up strategy
points to a simple route for manufacturing complex morphable structures out of flat perforated
sheets.

In recent years, origami [1–9] and kirigami [10–27]
have become emergent tools to design programmable
and reconfigurable mechanical metamaterials. Origami-
inspired metamaterials are created by folding thin sheets
along predefined creases, whereas kirigami allows the
practitioner to exploit cuts in addition to folds to
achieve large deformations and create 3D objects from
a flat sheet. Therefore, kirigami principles have been
exploited to design highly stretchable devices [18–24] and
morphable structures [25–27]. Interestingly, several of
these studies also show that pre-creased folds are not
necessary to form complex 3D patterns, as mechanical
instabilities in flat sheets with an embedded array of
cuts can result in out-of-plane deformation [19–26].
However, while a wide range of 3D architectures have
been realized by triggering buckling under compressive
stresses [25, 26], instability-induced kirigami designs
subjected to tensile loading are limited to a single
incision pattern comprised of parallel cuts in a centered
rectangular arrangement [19–23].

In this Letter, we investigate the tensile response of
elastic sheets of thickness t perforated with a square
array of mutually orthogonal cuts. This perforation
pattern introduces a network of square domains of edge
l separated by hinges of width δ [Fig. 1(a)]. While the
planar response of such perforated sheets in the thick
limit (i.e. for large values of t/δ) has received significant
attention, as it is characterized by effective negative
Poisson’s ratio [28–36] [Fig. 1(b)], here we add another
dimension and study how the behavior of the system
evolves when the thickness is progressively decreased
(i.e. for decreasing values of t/δ). Our combined
analytical, numerical and experimental results indicate
that in sufficiently thin sheets mechanical instabilities
triggered under uniaxial tension can be exploited to
create complex 3D patterns and even to guide the
formation of permanent folds. We also find that
the morphology of the instability-induced patterns is
strongly affected by the loading direction (see Figs. 1(c)-

(d) and Movies 1 in Supplemental Material [37]), pointing
to an effective strategy to realize functional surfaces
characterized by a variety of architectures.
We start by experimentally investigating the effect of

the sheet thickness t and hinge width δ on the response of
the system subjected to uniaxial tension along the square
diagonals [i.e. for γ = 45◦ - Fig. 1(c)]. Specimens are
fabricated by laser cutting an array of 3 × 8 mutually
perpendicular cuts [see Fig. 2(b)] into plastic sheets
(Artus Corporation, NJ) with Young’s modulus E =
4.33 GPa and Poisson’s ratio ν ≃ 0.4 (see Supplemental
Material: Experiments [37]). In Fig. 2(a), we report
the experimental stress-strain responses for 10 samples
characterized by different values of normalized thickness
t/δ and normalized hinge width δ/l.

(a)

(b)

(c) (d)

FIG. 1: (a) Schematic of the system: an elastic sheet
of thickness t perforated with a square array of mutually
orthogonal cuts. (b) In the thick limit (i.e. for large values of
t/δ) the perforated sheet deforms in plane and identically to
a network of rotating squares [28]. (c-d) For sufficiently small
values of t/δ mechanical instabilities triggered under uniaxial
tension result in the formation of complex 3D patterns, which
are affected by the loading direction. The 3D patterns
obtained for γ = 45◦ and γ = 0◦ are shown in (c) and (d),
respectively. Scale bars: 6 mm.
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FIG. 2: (a) Experimental stress-strain curves for perforated sheets characterized by different normalized hinge width δ/l
and normalized sheet thickness t/δ for γ = 45◦. Note that the stress is normalized by the effective in-plane Young’s modulus
Ē = 2/3E(δ/l)2. (b) Snapshots of the sample with δ/l = 0.06 and t/δ ≃ 0.085 at εx = 0, 0.12 and 0.24. (c) Critical strain εc
as a function of (t/δ)2 as obtained from experiments (markers) and predicted analytically (dashed line).

First, it is apparent that the initial response for all
samples is linear. At this stage, all hinges bend in-plane,
inducing pronounced rotations of the square domains
[Fig. 1(b)], which result in large negative values of
the macroscopic Poisson’s ratio [29, 30]. As such, the
stiffness of the perforated sheets, Ē, is governed by the
in-plane flexural deformation of the hinges and it can
be shown that (see Supplemental Material: Analytical

Exploration [37]):

Ē =
σx

εx
=

2

3
E

(

δ

l

)2

. (1)

Second, for the thin samples (i.e. t/δ ≪ 1), the curves
reported in Fig. 2(a) also show a sudden departure from
linearity to a plateau stress caused by the out-of-plane
buckling of the hinges. Such buckling in turn induces
out-of plane rotations of both the square domains and the
cuts, which arrange to form a 3D pattern reminiscent of
a misaligned Miura-ori [38] with an alternation of square
solid faces (corresponding to the square domains) and
rhombic open ones (defined by the cuts) (see Fig. 1(c),
Fig. 2(b) at εx = 0.12 and Movie 2 in Supplemental
Material [37]). To characterize the critical strain, εc, at
which the instability is triggered, we start by noting that
since the stress immediately after instability is almost
constant, the contribution of out-of-plane strain energy
Uo should be linear in εx, (see Supplemental Material:
Analytical exploration [37])

Uo(εx) = Ēεc(εx − εc). (2)

Moreover, assuming that the square domains remain rigid
and that the deformation localizes at the hinges which
can be modeled as flexural beam segments, Uo can also
be written as

Uo(εx) = 8×
1

8l2t

∫ δ

0

EIo
ρ2o

ds =
1

3
E

(

t

l

)2

θ2o, (3)

where Io = δt3/12, ρo = δ/2θo and 2θo is the opening
angle of each cut after out-of-plane buckling, which for
γ = 450 is approximated by

θ2o ≃ εx − εc. (4)

Finally, by equating Eqs. (2) and (3) we find that

εc ≃
1

2

(

t

δ

)2

, (5)

which despite the simplifications made, compares very
well with our experimental results [Fig. 2(c)] and
numerical simulations [Fig. S6]. Note that a similar
expression for the critical strain has been previously
obtained for kirigami patterns comprising parallel cuts
in a centered rectangular arrangement [23].

(a) (b)

(c) (d)

FIG. 3: The buckling-induced Miura kirigami sheet (a) is flat-
foldable, (b) forms a saddle shape with a negative Gaussian
curvature upon non-planar bending, (c) twists under anti-
symmetric out-of-plane deformation (d) has much higher
bending rigidity than the corresponding flat perforated sheet
(inset). Note that the 127 µm thick Miura kirigami sheet
shown here supports a 20g weight.
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FIG. 4: Effect of loading direction γ on mechanical response of the perforated sheets. Evolution of the (a) normalized stress
σx/Ē, (b) the in-plane macroscopic Poisson’s ratio νyx and (c) the opening angle of cuts 2θo1 and 2θo2 as a function of the
applied strain εx for different values of γ. Note that νyx is negative only for εx < εc (as at this stage the deformation of the
structure is purely planar and identical to that of a network of rotating squares) and that it increases sharply and reaches
positive values once the instability is triggered. (d) Numerical snapshots of 3D patterns obtained at εx = 0.125 for different
values of γ. The contours shows the normalized out-of-plane displacements.

Third, for large enough values of the applied strain
εx, the stress σx rises sharply again. This regime
starts when the square domains align [Fig. 2(b) at
εx = 0.24] and the deformation mechanism of the hinges
switches from bending- to stretching-dominated. At
this stage, localized zone of intense strain (of plastic
nature) develop in the hinges and result in the formation
of permanent folds. Although we start with a flat
elastic sheet with an embedded array of cuts (i.e. a
perforated sheet), by largely stretching it we form a
system that comprises a periodic distribution of both
cuts and folds (i.e. a kirigami sheet). In particular, we
note that our kirigami sheets possess several deformation
characteristics of the Miura-ori [2, 3] and zigzag-base
folded kirigami [12, 13] (see Movie 3 in Supplemental
Material [37]), as (i) they are flat-foldable [Fig. 3(a)];
(ii) they form a saddle shape with a negative Gaussian
curvature upon non-planar bending [Fig. 3(b)]; and
(iii) they can be twisted under anti-symmetric out-of-
plane deformation, [Fig. 3(c)]. However, in contrast
to the Miura-ori, misaligned Miura-ori and zigzag-base
folded kirigami, the macroscopic Poisson’s ratio of our
kirigami sheets is positive (see Movie 4 in Supplemental
Material [37]). This is the result of the fact that not
all the faces are rigid. As such, the applied tensile
deformation not only results in the rotation of the faces
about the connecting ridges, but also in the deformation
of those defined by the cuts, allowing lateral contraction
of the structure. It is also noteworthy that, differently

from the misaligned Miura-ori that can only be folded
to a plane, the additional degree of freedom provided by
the open cuts allow the Miura kirigami to be laterally
flat-foldable [Movie 4]. Finally, we note that our Miura
kirigami structures have higher bending rigidity than the
corresponding flat perforated sheet (see Fig. 3(d) and
Movie 3 in Supplemental Material [37]).

Having determined that instabilities in thin sheets
with an embedded array of mutually perpendicular
cuts can be harnessed to form complex 3D patterns,
we further explore the design space using Finite
Element (FE) analyses (See Supplemental Material: FE
Simulations [37]). We start by numerically investigating
the response of finite size samples stretched along the
square diagonals (i.e. γ = 45◦) and find excellent
agreement with the experimental results (Fig. S5 and
Movie 2 in Supplemental Material [37]). This validates
the numerical analyses and indicates that they can
be effectively used to explore the response of the
system. First, we use the simulations to understand
how plastic deformation evolves. By monitoring
the distribution of the von Mises stress within the
sheets, we find that that plastic deformation initiates
at the tip of hinges well after the buckling onset
[see Figs. S6 and S9] and then gradually expand
to fully cover the hinges when the sample is fully
stretched and the deformation mechanism changes from
bending-dominated to stretching-dominated. Second,
we numerically explore the effect of different loading
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conditions and find that uniaxial tension is the ideal
one to trigger the formation of well-organized out-
of-plane patterns in our perforated sheets [see Fig.
S7]. Third, we investigate the effect of the loading
direction by simulating the response of periodic unit
cells. In Fig. 4(a) we report the stress-strain responses
obtained numerically for perforated sheets characterized
by t/δ = 0.127 and δ/l = 0.04 loaded uniaxially for
γ = 0◦, 15◦, 30◦ and 45◦. Our results indicate that
the mechanical response of the perforated sheets under
uniaxial tension is minimally affected by the loading
direction. In fact, the evolution of both stress [Fig. 4(a)]
and macroscopic in-plane Poisson’s ratio [Fig. 4(b)] are
similar for different values of γ. By contrast, we find
that the morphology of the 3D patterns induced by
the instability is significantly affected by γ [Fig. 4(c)-
(d)]. As the loading directions varies from γ = 45◦ to
γ = 0◦, the symmetry in opening angle of the two sets
of perpendicular cuts breaks. While for γ = 45◦ all cuts
open equally (i.e. θo1 = θo2), as we reduce γ, one set
becomes wider (i.e. θo1 monotonically increases) and
the other progressively narrower (i.e. θo2 monotonically
decreases)[Fig. 4(c)]. In the limit case of γ = 0◦ one set
of cuts remains almost closed and a 3D cubic pattern
emerge after buckling [Fig. 1(d), Movie 5]. Furthermore,
permanent folds with direction controlled by γ can be
introduced by largely stretching the perforated sheets.
As such, by controlling the loading direction a variety
of kirigami sheets can be formed [Movie 6]. While all of
them are laterally flat-foldable, we find that by increasing
γ from 0◦ to 45◦ the resulting kirigami sheets have higher
bending rigidity and their Gaussian curvature varies from
zero (for γ = 0◦) to large negative values (for γ = 45◦).
Furthermore, by increasing γ, the resulting kirigami
sheets become more compliant under torsion (Movie 6
in Supplemental Material [37]).

In summary, our combined experimental, analytical
and numerical study indicates that buckling in thin
sheets perforated with a square array of cuts and
subjected to uniaxial tension can be exploited to form
3D patterns and even create periodic arrangements of
permanent folds. While buckling phenomena in cracked
thin plates subjected to tension have traditionally been
regarded as a route toward failure [39], we show that they
can also be exploited to transform flat perforated sheets
to kirigami surfaces. Our buckling-induced strategy not
only provides a simple route for manufacturing kirigami
sheets, but can also be combined with optimization
techniques to design perforated patterns capable of
generating desired complex 3D surfaces under external
loading [9, 11, 41]. Finally, since the response of our
perforated sheets is essentially scale-free, the proposed
pop-up strategy can be used to fabricate kirigami sheets
over a wide range of scales, from transformable meter-
scale architectures to tunable nano-scale surfaces [24, 40].
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