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We propose a scheme to simulate topological physics within a single degenerate cavity, whose
modes are mapped to lattice sites. A crucial ingredient of the scheme is to construct a sharp
boundary so that open boundary condition can be implemented for this effective lattice system. In
doing so, the topological properties of the system can manifest themselves on the edge states, which
can be probed from the spectrum of output cavity field. We demonstrate this with two examples: a
static Su-Schrieffer-Heeger chain and a periodically driven Floquet topological insulator. Our work
opens up new avenues to explore exotic photonic topological phases inside a single optical cavity.
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Introduction — Exploration of topological physics has
become one of the most fascinating frontiers in recent
years [1–3]. Since Haldane and Raghu proposed to tran-
scribe the topological features of electronic models into
photonic ones [1–5], studies on topological photonics have
been widely developed [6–19]. Although there is no con-
cept of band filling due to the abscence of Pauli exclusion
principle, bulk-edge correspondence is still present in this
linear bosonic system [7–10]. In such systems, detection
of the topologically edge modes are regarded as one of
the most important and direct methods of probing their
topological properties [9, 11, 14, 17, 18, 20–26].

Recent studies show that the internal degrees of free-
dom of quantum systems [27–33] may be used as syn-
thetic dimensions, which lead to the reduction of physical
resources. In the context of photonics, it has been shown
[33, 34] that synthetic gauge fields in a two-dimensional
(2D) system can be effectively simulated by using a 1D
array of degenerate cavities [35–37], where the internal
degenerate cavity modes serve as an extra dimension.
However, making identical cavities to form the array is
extremely challenging in practice. Hence it is highly de-
sirable that topological phases can be simulated using
just a single cavity. Furthermore, how to control the
cavity decay and to construct the desired boundary con-
dition for photons are highly nontrivial tasks.

The main purpose of the present work is three-fold:
First, we show that it is indeed possible to simulate cer-
tain topological phases inside a single cavity. Second,
we propose a way to construct a sharp boundary, with
which edge states will emerge when the system enters the
topological regime. Finally, exploiting the high controlla-
bility of the system, we show how a Floquet topological
insulator can be generated by periodically modulating
the cavity system. This allows us to investigate Floquet
topological phases which possess many unique features

not present in static systems [38–45] and a further un-
derstanding of the system [10, 14, 39, 40, 46, 47].
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FIG. 1: (Color online). (a) Illustration of experiment setup
about the degenerate cavity. (b) The effective photonic circuit
of (a). φ is the imbalanced phase between the two arms of
the auxiliary cavity.

Effective 1D chain in a single cavity — Figure 1(a) il-
lustrates schematically the cavity system we will be work-
ing with. It contains a main cavity (horizontally oriented
in the figure) which supports Laguerre-Gaussian (LG)
modes with different orbital angular momenta (OAM),
and an auxiliary cavity (vertically oriented in the figure)
which is connected to the main cavity by two beam split-
ters (BS1 and BS2). The electric field of the LG mode,
Epl , is characterized by the radial and the azimuthal
quantum numbers p and l, respectively. It is possible
to make the resonance frequency of the modes to be all
degenerate, i.e., independent of p and l (for details, see
Ref. [33, 34]). For our purpose, the radial quantum num-
ber p is irrelevant, and we shall neglect it henceforth. The
azimuthal index l characterizes the OAM of the photon,
and the hopping between different OAM modes is ac-
complished with the aid of the spatial light modulators
(SLMs) in the auxiliary cavity, which changes the OAM
(i.e., the azimuthal index l) of the photon by±δl. Denote
the annihilation operator for mode l as al, different OAM
modes are thus mapped to a 1D lattice chain, and the
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hopping between them is descried by a†lal+δl+h.c. in the
lattice model. In general, arbitrary long-range hopping
can be realized by adjusting δl. The hopping strength is
determined by the transmission/reflection coefficients of
the beam splitters and can be further controlled by the
phase retarders±φ [34]. The effective lattice system with
nearest-neighbor hopping is schematically illustrated in
Fig. 1. Note that the effective lattice size can be doubled
if we take into account that a given l-mode comes with
two orthogonal polarizations (see below).
Creating sharp boundary — To realize open boundaries

for the effective lattice system, we would like the cavity
to have an OAM cutoff Lm, such that modes with l = 0,
1, ..., Lm have negligible decay rates whereas all other
modes are not supported. The l = 0 LG mode is the
usual Gaussian mode with intensity peaks at the center,
whereas l 6= 0 LG modes all have doughnut shape whose
intensities peak at a circle with radius scaled as

√
l. This

spatial intensity distribution and the finite size of the
cavity mirrors may lead to l-dependent decay rate. Such
soft boundary due to the

√
l scaling can cause serious loss

of photons with large l [34] and destroy all interesting
physics related to edge modes (see Fig. 4(c)).
To create a sharp boundary, we take advantage of the

fact that the l = 0 mode can be easily distinguished
from the l 6= 0 modes and modify the cavity system as
schematically shown in Fig. 2(a). Here we put two SLMs
in the main cavity with δl = ±Lm, respectively. For pho-
tons traveling in the main cavity in the direction as shown
by the arrows, their OAM will change when passing the
SLMs. Specifically, a photon with azimuthal index l to
the left of the SLMs will change it to l − Lm when trav-
eling to the right of the SLMs. Hence the mode in the
main cavity becomes composite and we label this mode
pair [l, l − Lm] as |l〉. We make the two SLMs in the
auxiliary cavity to have δl = ±(Lm + 1), respectively.
Finally a hole is made in each of the two beam splitters
connecting the main and the auxiliary cavities. The hole
size is carefully designed so that, ideally, a photon with
l = 0 will always go through the hole without being re-
flected, while all other modes with l 6= 0 will be reflected
with certain probability. It is not difficult to see that [34],
with this design, (1) a composite mode |0〉 in the main
cavity may hop to |1〉, but not to | − 1〉; (2) a composite
mode |Lm〉 may hop to |Lm−1〉, but not to |Lm+1〉; (3)
a composite mode |l〉 with 0 < l < Lm may hop to either
|l − 1〉 or |l + 1〉. In other words, we have succeeded in
creating two sharp boundaries such that only composite
modes |l = 0, 1, · · · , Lm〉 can exist in the main cavity.
It is clear that the key here is the design of the hole

in the beam splitters which should let l = 0 mode pass
through with high probability, while not affecting too
much the l 6= 0 modes. The sharpness of the boundary
is then determined by how well we can distinguish l = 0
photon from l 6= 0 modes. We can achieve good distin-
guishability due to the small intensity overlap between
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FIG. 2: (Color online) (a) Proposed experimental setup of sin-
gle degenerate cavity to simulate 1D finite lattice using com-
posite modes induced by two SLMs with δl = ±Lm. Two hol-
low beam splitters are employed so that only modes l = 0 can
transmit through the hole. (c) is the effective photonic circuit
of (a). (b) Normalized intensity profiles Il(r) = |El(r)|2 for
different l-modes calculated using the parameters discussed
in [34]. The vertical lines indicate the possible center pinhole
sizes in each BS for different hopping steps n = 1, 3, and
5, with the corresponding fraction of l = 0 photon intensity
inside the pinhole as 78%, 96%, and 99%, respectively.

l = 0 mode with the adjacent l = ±1 modes. Experimen-
tally, sharper boundaries can be obtained for larger hop-
ping step n if we replace the two SLMs in the auxiliary
cavity with δl = ±(Lm+n). In this way, the effective lat-
tice sites are represented by modes |l = 0, n, · · · , nLm〉.
We need only to distinguish l = 0 mode from l = ±n
modes whose intensity overlap scales as e−n (see Fig. 2(b)
and details in [34]).
With the creation of sharp boundaries, we can now use

it to explore the topological properties of the system. We
will use two examples below to demonstrate this.

(d) ...

(b) (c)(a)

BS HWP PBSHBS SLM phase retarder

FIG. 3: (Color online) Schematic diagram of simulating 1D
SSH chain. (a) shows the skeleton inside of the main cav-
ity with two-auxiliary-cavity circuits depicted in (b) and (c),
where optical circuits related to the hopping J0 cosφ and J1

are shown. (d) is the diagrammatic representation of the
Hamiltonian H . BS: beam splitter. HBS: BS with a pinhole
in the center. SLM: spatial light modulator. HWP: half-wave
plate. PBS: polarization beam splitter which transmit vertical
polarized photons and reflect horizontal polarized photons.

Realizing and probing SSH model — Our first exam- ple concerns the realization of the Su-Schrieffer-Heeger
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FIG. 4: (Color online) (a) and (b) show the spectrum τ (ω) of model (1) for J1 = 1 and Lm = 49 with the decay rates

γj = 0.05(1 + e−j/
√

25 + e−|j−Lm|/
√

25) for n = 2 and n = 4 respectively, where the influence of H ′ in remaining lattices is also
taken into account. (c) shows the output spectrum of a prolonged chain using the same decay as in (a), which corresponds to
the soft boundary condition discussed in the context. (d) shows the dynamics of N0 with hopping step n = 2 for an input pulse

a(t)in,0 = exp[−(t − 3)2/8]/
√

2
√
π at site j = 0 with the decay given in (a) for fixed J ′

0 = 0.9 and 1.1 respectively. (e) plots
the amplitude N0 for different n at t = 15 along with J ′

0, which drops to zero across the phase transition point.

(SSH) model [48], a prototypical 1D topological model,
as schematically illustrated in Fig. 3. Here we take ad-
vantage of the fact that each OAM mode l comes with
two orthogonal polarizations, which we will map to lat-
tice sites as El,H → 2l and El,V → 2l + 1. The cou-
pling between modes a2l and a2l+1 can be easily accom-
plished with polarization rotators inside the auxiliary
cavities. The coupling a2l+1 ↔ a2l+2 corresponds to a
polarization-dependent hopping El,V ↔ El+1,H , which
can be realized with the combination of the polarized
beam splitters (PBSs) and the SLMs (See Fig.3(c) and
[34] for details). The total effective Hamiltonian simu-
lated can then be written as HT = H +H ′ with

H =

Lm
∑

l=0

[

J0 cos(φ)a
†
2la2l+1 + J1α

(n)
l+1a

†
2l+1a2l+2 + h.c.

]

,(1)

where H is the desired SSH model Hamiltonian when
α
(n)
l+1 = 1. H ′ describes the interaction of other cav-

ity modes in the remaining lattice sites, whose explicit
form can be found in [34]. The phase dependent cou-
pling proportional to cosφ is due to the interference ef-
fect inside the auxiliary cavity, which can be used as a
convenient control knob to adjust the hopping amplitude
J ′
0 ≡ J0 cosφ [34]. The presence of pinhole results in a

reduction of coupling strength at the lattice site 2(l+ 1)

defined by α
(n)
l+1 = 1 − η

(n)
l+1 for giving hopping step n,

where η
(n)
l+1 is the portion of photons for modes |(l+1)n〉

inside the pinhole of the BSs. As shown in [34], η
(n)
l+1

decreases exponentially along with l. In the ideal case

α
(n)
l+1 = 1, the system becomes topologically nontrivial

when J ′
0 < J1. In the presence of sharp boundaries, this

leads to topologically induced edge states.
To illustrate how the presence of the edge states can

be detected, let us calculate the output spectrum of the
cavity using the Langevin equations [33, 49]

∂taj = −i[aj, H(t)]− γj
2
aj −

√
γjain,j , (2)

with γj the decay rate on lattice site j. The out-

put field is linked to the dynamics inside the cavity
through the standard input-output relation aout,j(t) =
ain,j(t) +

√
γjaj(t). In the frequency domain, this leads

to aout,j(ω) =
∑

j′(δjj′ − Tjj′ )ain,j′ (ω) with the trans-

mission element Tjj′ = −i〈j|
√
Γ[ω −H + iΓ/2]−1

√
Γ|j′〉

and the decay matrix Γ = diag{γ0, · · · , γLm}.
Figure 4(a) and (b) show the total transmission rate

τ(ω) =
∑

j,j′ |Tjj′ |2 as functions of J ′
0 for n = 2 and 4

respectively. The imperfection induced by the pinhole
in the BSs results in site-dependent hoppings charac-

terised by α
(n)
l+1 and unwanted coupling |0〉 → | − n〉 and

|Lm〉 → |Lm + n〉 at boundaries [34], both of which are
explicitly taken into account. For n = 2, the presence
of such unwanted tunneling couples bilateral edge modes
in the topological nontrivial regime. This results in the
splitting of edge modes into two branches around ω = 0
[34]. For larger hopping step n = 4, the two branches
merge as such hopping decreases exponentially with n.
For comparison, we plot the transmission rate for a soft
boundary in Fig. 4(c), where the presence of edge modes
is completely erased. This clearly demonstrates the im-
portance of constructing the sharp boundary in our sys-
tem. Figure 4(d) illustrates the dynamics ofN0 = 〈a†0a0〉,
the amplitude of the first site for n = 2, when initially
we inject an input pulse from this site. In the topological
regime J ′

0/J1 < 1, due to the presence of the edge state,
N0 persists over a very long time; whereas in the non-
topological regime when J ′

0/J1 > 1, N0 decays to zero
rather quickly. In Fig. 4(e), we plot the value of N0 at
t = 15 as a function of J ′

0 when J1 is fix to be 1 for dif-
ferent n. A transition at J ′

0/J1 = 1 can be easily seen,
which can be viewed as a clear evidence of the topolog-
ical phase transition at that critical point [34]. We note
that the oscillation shown for small hopping step is due
to the interference of two split edge modes in the pres-
ence of unwanted hopping at boundaries. For larger n,
such oscillatory behavior disappears.
Floquet topological insulator and edge modes inside

cavity — In the second example, we take advantage of
the flexibility of our cavity system and also investigate
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a periodically driven situation. Such Floquet systems
have received great attention recently as they exhibit
many unique properties absent in the static models [41–
45]. We periodically modulate the system by modulat-
ing the phase delay as φ(t) = φ0 + α cos(Ωt/2), which
leads to a periodic modulation of the hopping amplitude
J ′
0 = J0 cosφ. When φ0 = 0, we have cos[α sin(Ωt/2)] =
j0(α)+2j2(α) cos(Ωt)+... with jn(x) the nth order Bessel
function. We can choose α such that all high-order terms
can be safely neglected. This leads to a Floquet version
of Hamiltonian (1) where the hopping J0 cosφ is now re-
placed with the modified one as J0 + λ cos(2πt/T ) with
T = 2π/Ω. Experimentally, such high frequency phase
modulation of φ can be implemented with the aid of an
electro-optic modulator, where the modulation frequency
can be as high as tens of GHz. This is much larger than
the typical cavity coupling strength (a few MHz), and is
sufficient for our purpose.
The properties of such periodic driven system can be

obtained using the standard Floquet theory [34, 38–40,
46, 47]. The quasi-energies ǫq and Floquet modes can be
solved in the composite Floquet space T⊗R where R rep-
resents the usual Hilbert space and T is spanned by the
periodic functions 〈t|m〉 = eimΩt [34]. The index m de-
scribes the number of phonons and defines the subspace
named as the mth Floquet replica. The wave function in
the usual Hilbert space |ψ〉 = ∑

m,j cm,j(t) exp(imΩt)|j〉
can be rewritten as |ψF 〉 =

∑

m,j cm,j(t)|m, j〉, which
satisfies the modified Schrödinger equation [38]

d|ψF 〉
dt

= −iHF |ψF 〉 −
γ

2
|ψF 〉 , (3)

with the last term describing the dissipation effect. The
time-independent Floquet Hamiltonian readsHF = F̂m⊗
Ĥ(m) + ΩF̂z ⊗ IR, where IR is the identity operator in
R-space, H(t) =

∑

m Ĥ
(m)eimΩt, (Fm)i,j = δj,i+m, and

(Fz)m,n = mΩδm,n.
For high driving frequency Ω, different Floquet bands

are almost uncoupled. When Ω decreases, the interaction
of Floquet replicas for m = 0 and m = ±1 leads to
the appearance of gaps at ±Ω/2 . Topological transition
occurs when bands in different replicas start to overlap
with each other, and is signalled by the presence of edge
states at quasi-energy ǫq = 0 and Ω/2, respectively.
As in the previous example, the presence of the Floquet

phase transition and the associated edge states can be
observed by detecting the total output spectrum defined
as T (ω) =

∑

ψF (0)

∑

m,j |cm,j(ω)|2 for ω ∈ (−Ω/2,Ω/2)

[34]. The input state ψF (0) can be prepared by feeding
the cavity using mode j with different frequency ω = mΩ.
When ω is resonant with the Floquet modes, it induces a
peak in the spectrum. Especially around ω = 0 or Ω/2,
T (ω) is almost completely determined by the presence
of the mid-gapped edge modes, while contributions from
other modes are greatly reduced. This provides a direct
evidence of the Floquet topological phase transitions.

(a)

(b) (c)

FIG. 5: (Color online). (a) The spectrum T (ω) within the
Floquet zone (−Ω/2,Ω/2) for different Ω for hopping step
n = 4 with the same decay used in Fig. 4. Other parameters
are [J0, J1, λ] = [2, 1, 0, 1.6] and Lm = 49. (b) and (c) show
the spectra T (0) and T (Ω/2) along with Ω, where topological
transition is manifested by jumps around the phase transition
points. v0 and v+ are their corresponding numbers of edge
modes defined in [34].

Figure 5 shows the cavity output spectrum as a func-
tion of Ω within the Floquet zone, where the size effect of
pinhole in the BSs is also involved. The presence of the
Floquet gaps is revealed by the vanishing T (ω) around
quasi-energy 0 and Ω/2. In addition, starting with a
topologically trivial phase at large Ω, Floquet topologi-
cal phase transitions occur when two replicas touch each
other as Ω decreases. The construction of boundaries en-
able us to detect such transitions by observing the output
spectrum directly. As shown in Fig. 5(b) and (c), due to
the presence of finite gaps, the amplitude of T (0) and
T (Ω/2) exhibit staircase-like structure and jump around
the critical point where the phase transition occurs. This
can be viewed as a direct evidence of Floquet topological
phase transitions.

Outlook and Conclusion —We have proposed a scheme
to simulate topological physics in a single optical cavity
by constructing sharp boundaries in the synthetic dimen-
sions. All the operations about the photonic OAMmodes
proposed here can be reliably implemented through linear
elements, which make the system experimental friendly
and resource undemanding. The proposed scheme can
also be extended to explore nontrivial topological physics
in high dimensional system [50, 51]. In view of cur-
rent experimental progress on synthetic magnetic field for
photons [19] and the strong light-atom coupling inside a
multimode resonator [52], effective photon-photon inter-
actions in degenerate cavity regime [53–55] also becomes
possible. Therefore our work also opens up an avenue
to explore various exotic topological photonic states in
optical cavity system.
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