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We show that a laser pulse can always be found that induces a desired optical response from
an arbitrary dynamical system. As illustrations, driving fields are computed to induce the same
optical response from a variety of distinct systems (open and closed, quantum and classical). As a
result, the observed induced dipolar spectra without detailed information on the driving field is not
sufficient to characterize atomic and molecular systems. The formulation may also be applied to
design materials with specified optical characteristics. These findings reveal unexplored flexibilities
of nonlinear optics.
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Introduction. One system imitating another different
system, known as mimicry, abounds in the sciences. For
example, in biology [1–3], different species often change
their appearance in order to hide from predators. In
material science [4–7] and chemistry [8–12], simpler and
cheaper compounds one sought to mimic the properties
of more complex and expensive materials. In this Letter,
we introduce the method of Spectral Dynamic Mimicry
(SDM) bringing imitation into the domain of optics via
quantum control. Thereby, SDM may be viewed as real-
izing an aspect of the alchemist dream to make different
elements or materials look alike, albeit for the duration
of a control laser pulse.

Summary of results. We want the induced dipole spec-
tra (IDS) of an N -electron system, ~y(t) =

∑N
k=1〈~̂xk〉,

to follow (i.e., track) a predefined time-dependent vector
~Y (t); atomic units (a.u.) with ~ = m = e = 1 are used

throughout. In particular, assuming that ~y(t) = ~Y (t) at

some time moment t, then the control field ~E(t+ dt) en-

forcing ~y(t+ dt) = ~Y (t+ dt) at the next time step t+ dt
is given by

~E(t+ dt) = − 4

Ndt

[〈
N∑

k=1

~̂pk

〉
−
~Y (t+ dt)− ~Y (t)

dt

]

+
2

N

〈
N∑

k=1

∇kVk(~̂xk)

〉
− 2

N

〈
N∑

k=1

~Ak

〉
− ~E(t) +O (dt) ,

(1)

where dt is an infinitesimal time increment,〈
−∇kV (~̂xk)

〉
(t) and 〈 ~Ak〉(t) describe the interac-

tion with a potential force and an environment,
respectively (see Sec. I of Supplemental Material [13]
for details, which includes Ref. [14]). The state (i.e., the
density matrix and the probability distribution in the
quantum and classical cases, respectively) determining
the expectation values is propagated to the next time
moment via the corresponding equation of motion (see,

e.g., Table I) using ~E(t + dt). Having calculated ~E(t)
for all times, the dynamical equation is used to verify

satisfaction of the tracking condition ~y(t) = ~Y (t).

Since Eq. (1) has exactly the same structure of the
single particle case, we will study systems with single-
electron excitation (i.e., N = 1) in one spatial dimension.
In this case, Eq. (1) takes the form

E(t+ dt) =− 4

dt

[
〈p̂〉 (t)− Y (t+ dt)− Y (t)

dt

]
+ 2 〈V ′(x̂)〉 (t)− 2〈A〉(t)− E(t) +O (dt) ,

(2)

where 〈−V ′(x̂)〉 and 〈A〉 are specified in Table I for
widely used models. The described scheme constitutes
SDM, as the distinct physical systems in Fig. 1 produced
the same Y (t), yet the resulting control fields calculated
from Eq. (2) are unique once the system’s initial state is
supplied.

The physical meaning of Eq. (2) is that a desired po-
larizability can be induced from any dynamical system
as long as no constraints are imposed on the driving
laser field. In this fashion, the IDS of any two atomic
or molecular systems can be made identical by applying
the specific required pulse shapes.

Such versatility of SDM is due to the fact that the in-
duced dynamics takes advantage of the continuum. The
IDS y(t), as an expectation value of x̂, can attain ar-
bitrary values only if the coordinate x̂ is unrestricted.
Moreover, if a strong field E(t) is required to match an
IDS, then E(t) may induce ionization necessitating the
coupling to the continuum. Mathematically, this means
that x̂ and p̂ need to act in an infinite dimensional
Hilbert space.

Equation (2) is a special case of tracking control [15]:
Given a desired target Z(t), find the control E(t) such
that Z(t) = z(t) with z(t) = 〈Ô〉 for a chosen observ-
able Ô. For simplicity, consider a closed quantum system
(Â = 0) with the hamiltonian Ĥ(t) = Ĥ0 − E(t)µ̂ and
[Ô, µ̂] = 0. The corresponding Ehrenfest theorem then
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Type of system 〈O〉 〈A〉(t) Equations of motion

Closed Quantum Tr [ρ̂Ô] 0 i~dρ̂/dt = [Ĥ, ρ̂]

Open Quantum Tr [ρ̂Ô] −2γ〈p̂〉 Caldeira-Legget equation, Eq. (5)

Closed Classical 1
N

∑N
i=1O(xi(t), pi(t)) 0 Newton’s equations, Eq. (6)

Open Classical
∫
dxdpO(x, p)ρ(x, p, t) −2γ〈p〉 Fokker-Planck equation, Eq. (8)

TABLE I: The dynamical systems, averages and equations of motions analyzed in this Letter. In all quantum cases, we have
Ĥ = Ĥ0 − x̂E(t), where Ĥ0 = p̂2/2 + V (x̂). The atoms are represented as a single active electron moving in the field of a
soft-Coulomb potential V (x) = −Ze/

√
x2 + a2, where Ze is the effective charge of the atom and both Ze and a are chosen such

that the experimental value of the ionization potential is reproduced. In the open classical case, ρ(x, p, t) correspond to the
particle’s probability density in the phase space.
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FIG. 1: The control fields Ea(t), Eb(t), Ec(t), Ed(t) and Ee(t)
induce the same nonlinear optical response Y (t) on: closed
quantum systems (a) and (b), (c) an open quantum system,
(d) an closed classical system and (e) an open classical sys-
tem. In (a) and (b), the system is a hydrogen atom initially
prepared in the ground and first excited states, respectively.
Eb(t), Ed(t) and Ee(t) are scaled for comparison with the
first field E(t) that is applied to a model of an argon atom
to produce the induced dipolar spectra Y (t) ,which is used
for tracking in the remaining cases. Compare with Fig. 2 (f)
for the importance of small differences in the control fields,
which are not apparent in the time domain.

reads

d2Z(t)

dt2
= −

〈
[Ĥ0, [Ĥ0, Ô]]

〉
+
〈

[µ̂, [Ĥ0, Ô]]
〉
E(t). (3)

Given Z(t), Eq. (3) is solved with respect to the unknown
E(t). Tracking control has been typically applied to
finite-level quantum systems. In this case, 〈[µ̂, [Ĥ0, Ô]]〉
may vanish at some time t, leading to a singularity in
E(t). There is no general way to prevent these singu-
larities in finite dimensional tracking irrespective of the
form of the finite dimensional matrices Ĥ0, µ̂, and Ô [47].
Note that SDM is free of such singularities by construc-
tion [48].

According to Eq. (2), the control field is shaped in time
domain, thus possibly introducing high frequency compo-
nents beyond the target response bandwidth ω/ω0 & 23,
as seen in Fig. 2. However, those high frequencies are
not important for the dynamics, since removing all fre-
quencies outside the target response bandwidth, (i.e.,
for ω/ω0 & 23) in the tracking fields Ea(t), Ec(t) and
Ed(t), does not significantly affect the tracking condition
y(t) = Y (t). Moreover, SDM is robust to the presence of
multiplicative noise in the tracking (see Sec. II of Sup-
plemental Material [13] for details, which includes Ref.
[14]).

Equation (2) describes a broad variety of dynami-
cal systems (Table I). As illustrations, we apply SDM
to the following models: (a) and (b) closed quantum
systems governed by the von Neumann equation, (c)
open quantum systems modeled by the Caldeira-Legget
master equation [16, 17], (d) classical closed systems
obeying Newton’s equations, and (e) open classical sys-
tems described by the Fokker-Planck equation [18]. In
all these cases, we track the target Y (t), which is ob-
tained as an IDS of an isolated argon atom treated as
having one electron responding to a band limited field
E(t) = 0.04 cos(ω0t)f(t) of central frequency ω0 = 0.06
(a.u) (756 nm) and the envelope f(t) = cos2(πt/(2tf )),
where the final propagation time is tf = 8π/ω0. Figure
2 depicts the spectrum of Y (t) exhibiting high harmonic
generation (HHG) [19, 20].

We employ the single active electron approach [21] to
model atomic systems throughout. Hence, an atom is
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represented by a single particle moving in the field of a
soft-Coulomb potential

V (x) =
−Ze√
x2 + a2

, (4)

where the effective charge Ze ≈ 1 and radius a is adjusted
such that the ground state energy in each case matches
the experimental ionization potential. For example, Ze =
1 and a2 = 2 (a.u.) models a hydrogen atom, while
Ze = 1 and a2 = 1.37 (a.u.) are used for argon. Since
there is no degeneracy in the spectrum of one dimensional
quantum systems, the eigenstates are labelled only by the
principal quantum number n.

Making two closed quantum systems look alike. As a
first example of SDM, we make hydrogen ‘look like’ ar-
gon by matching their IDS. We find the shape of the
laser field Ea(t) [Eq. (2)] that induces an optical re-
sponse Y (t) in a hydrogen atom initially in the ground
state (n = 1), modeled as a closed quantum system. Su-
perimposing the Fourier transforms of Ea(t) and Y (t) in
Fig. 2 (a), we note that the tracking field bandwidth
is broader than the target bandwidth. This trend is ob-
served in all examples presented in this Letter. Moreover,
the third harmonic (3ω0) in the tracking field is an order
of magnitude smaller than the same frequency in Y (t).
A further analysis reveals that the induced response is at
best weakly dependent of the third harmonic in the driv-
ing field. Thus, the 3ω0 generation in hydrogen occurs
via parametric down conversion [22].

As mentioned earlier, the control fields calculated us-
ing SDM are unique once the system’s initial state is
specified. For the control field Ea(t) shown in Fig. 1, the
hydrogen atom was initially in the ground state; however,
a very different control field is required (Eb(t) in Figs. 1
and 2 (b)) if the hydrogen atom is initially in the first
excited state (n = 2). The amplitude of Eb(t) is nearly
a factor of ten smaller than Ea(t) (see Fig. 1) since the
energy gap between the ground and first excited states
in the hydrogen atom is approximately half the ioniza-
tion potential. Moreover, for the hydrogen atom in the
first excited state, single photon ionization takes place
for ω/ω0 ≈ 5, whereas parametric down conversion dom-
inates the dynamics for ω/ω0 . 7 (see Fig. 2 (b)). For
higher frequencies where ω/ω0 & 7, linear response takes
place.

Making open and closed quantum systems look alike.
The effects of energy damping and dephasing are com-
monly modeled by the Caldeira-Legget master equation
[16, 17]

i
dρ̂

dt
= [Ĥ, ρ̂] + iL[ρ̂], L[ρ̂] = −iγ[x̂, [p̂, ρ̂]]− χ[x̂, [x̂, ρ̂]],

(5)

where χ = 2γkT . Using Eq. (2) with the damping term
〈A〉 = −2γ〈p̂〉 as specified in Table I, we find the control

(e) 

(c) (d) 

(a) (b) 

(f) 

FIG. 2: (color online) The control fields Ea(t), Eb(t), Ec(t),
Ed(t), Ee(t) and the target IDS Y (t) from Fig. 1 in frequency
domain. absF [·] denotes the absolute value of the Fourier
transform. The ω0 is the carrier frequency of E(t) in Fig. 1.

field Ec(t) (Fig. 2 (c)) that induces the optical response
of the atomic argon, interacting with a dissipative envi-
ronment, to match the nonlinear spectra of the isolated
argon Y (t) shown in Fig. 1. The amplitude damping
time and temperature were chosen as γ−1 ≈ 242 fs and
T ≈ 100 K, correspondingly.

According to dynamical decoupling [23–26], appropri-
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ately designed laser pulses can compensate for the in-
teraction of a quantum system with the environment.
Dynamical decoupling usually relies on a perturbative
treatment of the environment; whereas, SDM [Eq. (2)]
is explicitly nonperturbative in both the field and envi-
ronmental interactions.

HHG is an important source for creating attosecond
pulses. A weak HHG signal is often obtained by irradi-
ating a low pressure inert gas with a band limited pulse
[20]. The intensity of HHG is proportional to the gas con-
centration. However, the denser the gas, the less isolated
the atomic system becomes, giving rise to decoherent dy-
namics, thus suppressing HHG [27]. The presented SDM
illustration shows that the HHG spectra of an isolated
system can be reproduced even from an open system by
properly pulse shaping the incident laser field.

Making closed classical and quantum systems look
alike. The position and momentum of an ensemble of
N classical particles obey Newton’s equations

d

dt
xi(t) = pi(t),

d

dt
pi(t) = −V ′(xi(t)) + E(t), (6)

where V (x) is given by Eq. (4). The ensemble’s initial
momentum and positions are randomly generated by the
normal distribution with zero mean and standard devia-
tion of 1. According to Table I, the IDS of the classical
system yd(t) is given by yd(t) = 1

N

∑N
i=1 xi(t). From Eq.

(2), we find the control field Ed(t) (Fig. 2 (d)) that forces
the IDS of the classical argon model [Eq. (6)] to match
the IDS of the isolated argon Y (t).

The dynamics underlying the classical IDS y(t) induces
nonlinear optical processes. In particular, the further the
trajectory goes from the center of force (i.e., the origin),
the more harmonics it yields. This can be seen from the
following taylor expansion of Eq. (6)

d

dt
pi(t) ≈ E(t)− Ze

a3
xi(t) +

3Ze

2a5
xi(t)

3 +O
(
xi(t)

5
)
.

(7)

The first two terms on the right hand side correspond to
a driven harmonic oscillator. Therefore, the trajectories
closest to the origin only linearly respond to the control
field E(t); whereas, the trajectories farther away give rise
to high harmonics. As can be seen in Fig. 2 (f), the spec-
trum of the classical control field Ed(t) deviates signifi-
cantly from the previously obtained control fields Ea(t),
Ec(t) and Ee(t) for the quantum cases. As in system (a)
of Figs. 1 and 2 (a), suppressing the third harmonic (3ω0)
in the classical control field does not significantly affect
the response. It is noteworthy that significantly non-
linear classical dynamics can be indistinguishable from
quantum evolution [28–30].

Making open classical and closed quantum systems look
alike. The state of an open classical system can be
specified by a positive probability distribution function
ρ = ρ(x, p, t) defined on a classical phase space. The

dynamics of such a system is commonly modeled by the
Fokker-Planck equation [18]

∂ρ

∂t
=

[
− ∂

∂x
p+ (V ′(x)− E(t))

∂

∂p
+ 2γ

∂

∂p
p+D

∂2

∂p2

]
ρ,

(8)

where D = 0.01 (a.u.) denotes a diffusion coefficient and
γ = 0.001 (a.u.) quantifies energy damping.

Following Ref. [31], we use Eq. (8) as a classical coun-
terpart of the Caldeira-Legget Eq. (5), modeling the
atomic argon interacting with a dissipative bath. From
Eq. (2) with 〈A〉 = −2γ〈p〉 as specified in Table I, we
find the control field Ee(t) (Figs. 1 and 2 (e)) that forces
the IDS of the argon classical model [Eq. (8)] to match
the IDS of the isolated argon Y (t).

It is important to note the remarkable similarity be-
tween E(t) and Ee(t) in Fig. 1. In fact, for our particular
example of open classical dynamics, the intensity of the
IDS is proportional to the intensity of the control field
Ee(t). Furthermore, reducing the intensity of any indi-
vidual frequency in the control field linearly decreases
the intensity of the corresponding harmonic in the IDS
without influencing the other frequencies. This shows
that there is only a linear optical process taking place.
Moreover, there are no cooperative effects between dif-
ferent frequency components – a consequence of strong
decoherence in the particular example of open classical
dynamics considered here (see also Ref. [28]).

The spectrum of the tracking fields Ea(t), Ec(t), Ed(t)
and Ee(t) are shown in Fig. 2 (f). Subsequent analy-
sis indicates that the optical responses for the closed (a)
and open (c) quantum systems are nonlinear in the fre-
quency ranges of ω/ω0 . 13 and ω/ω0 . 7, respectively.
Similar to our simulations of the open classical system
(e), laser-matter interactions described within the classi-
cal and quantum electrodynamics coincide in the linear
response regime [32, 33]. In contrast, the closed classi-
cal system (d) displays strong nonlinear effects overall,
as can be seen in Fig. 2 (d) and (f).

Conclusions. We put forward the paradigm of SDM in
which laser fields are shaped to make any distinct dynam-
ical system look identical spectrally to any other system.
As a result, the observed IDS without any information
on the driving field cannot be used to unambiguously
characterize atomic and molecular systems.

SDM can be applied to many important problems.
For example, it can be seen as the opposite of Opti-
mal Dynamic Discrimination (ODD) which shows that
nearly identical quantum systems may be distinguished
by means of their dynamics induced by properly shaped
laser pulses [34, 35]. ODD has been experimentally con-
firmed for a number of nominally similar systems [36–41].
In future works, we plan to reformulate ODD as a track-
ing control problem (in the spirt of SDM) in order to
propose novel methods for the concentration character-
ization of a mixture of complex molecular species with
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similar linear spectra. This problem is inspired by the
challenges in the life sciences [27, 42–45]. ODD may also
be used to find control fields that optimally discriminate
between classical and quantum models of the same phys-
ical system, thereby shading light on ongoing discussions
[28–30]. Moreover, being non-perturbative in both the
control field and environment interactions, SDM offers
a potential alternative to dynamical decoupling [23–26].
Furthermore, in the framework of SDM, HHG spectra of
an isolated system can be induced from an open system
by pulse shaping the incident laser field, providing an ef-
ficient way to generate bright HHG from dense atomic
gases. In addition, the high degree of robustness to noise
of the tracking fields (see Sec. II of Supplemental Mate-
rial [13], which includes Ref. [14]) makes SDM suited for
experimental applications.

As a final remark, a recently experiment [46] demon-
strated the feasibility of simultaneous characterization of
the control field as well as IDS, opening a possibility of
SDM experimental realization.
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Delchev, U. Jordis, and J. Phopase, RSC Advances 4,
21351 (2014).

[13] See Supplemental Material at
***************************.

[14] A. D. Bandrauk and H. Shen, Canadian Journal of Chem-
istry 70, 555 (1992).

[15] P. Gross, H. Singh, H. Rabitz, K. Mease, and G. Huang,
Physical Review A 47, 4593 (1993).

[16] A. O. Caldeira and A. J. Leggett, Physica A: Statistical
mechanics and its Applications 121, 587 (1983).

[17] A. Caldeira and A. J. Leggett, Annals of Physics 149,
374 (1983).

[18] C. W. Gardiner et al., Handbook of stochastic methods,
vol. 4 (Springer Berlin, 1985).

[19] P. B. Corkum, Phys. Rev. Lett. 71 (1993).
[20] C. Winterfeldt, C. Spielmann, and G. Gerber, Rev. Mod.

Phys. 80 (2008).
[21] D. Bauer, Phys. Rev. A 56 (1997).
[22] R. W. Boyd, Nonlinear Optics, Third Edition (Academic

Press, 2008).
[23] L. Viola and S. Lloyd, Phys. Rev. A 58 (1998).
[24] P. Facchi, S. Tasaki, S. Pascazio, H. Nakazato, A. Tokuse,

and D. A. Lidar, Phys. Rev. A 71 (2005).
[25] M. Ban, journal of modern optics 45, 2315 (1998).
[26] P. Cappellaro, J. Hodges, T. Havel, and D. Cory, The

Journal of chemical physics 125, 044514 (2006).
[27] E. Constant, D. Garzella, P. Breger, E. Mével, C. Dorrer,
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both positive and negative eigenvalues.
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