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We show that four heavy fermions interacting resonantly with a lighter atom (4+1 system) become
Efimovian at mass ratio 13.279(2), which is smaller than the corresponding 2+1 and 3+1 thresholds.
We thus predict the five-body Efimov effect for this system in the regime where any of its subsystem
is non-Efimovian. For smaller mass ratios we show the existence and calculate the energy of a
universal 4+1 pentamer state, which continues the series of the 2+1 trimer predicted by Kartavtsev
and Malykh and 3+1 tetramer discovered by Blume. We also show that the effective-range correction
for the light-heavy interaction has a strong effect on all these states and larger effective ranges
increase their tendency to bind.

Two heavy fermions interacting resonantly with a light
atom is an emblematic system exhibiting a transition
from the non-Efimovian to Efimovian regime at the mass
ratio M/m = αc(2, 1) = 13.607 [1]. The transition
clearly demonstrates the interplay of interaction effects
and quantum statistics. This can be seen already in
the simplest Born-Oppenheimer picture [1, 2]; the light
atom produces an effective attraction between the heavy
atoms proportional to −1/mR2, where R is the separa-
tion between the heavy atoms. This attraction competes
with the centrifugal barrier ∝ 1/MR2 dictated by the
fermionic symmetry of the heavy atoms. As one increases
M/m above αc(2, 1) the induced attraction wins over the
centrifugal barrier and the system becomes Efimovian.
It is remarkable that this simple system also exhibits
another peculiar effect well inside the non-Efimovian
regime. Namely, for a positive heavy-light scattering
length a and forM/m > 8.173 a (non-Efimovian) weakly-
bound trimer with unit angular momentum emerges un-
der the atom-dimer scattering threshold [3]. At smaller
mass ratios this trimer turns into a p-wave atom-dimer
resonance, effects of which have been observed in the 40K-
6Li mixture (M/m = 6.644) [4]. This manifestly non-
perturbative physics has stimulated extensive few- and
many-body studies in mass-imbalanced Fermi mixtures
[3, 5–21].

A natural question is how many identical fermions can
be bound by a single light atom? It turns out that three
heavy fermions interacting with a light atom become Efi-
movian for M/m > αc(3, 1) = 13.384 [22], i.e., below
the Efimov threshold for the 2+1 subsystem. Blume
[23] has shown that a 3+1 non-Efimovian tetramer with
LΠ = 1+ symmetry emerges below the trimer-atom scat-
tering threshold forM/m & 9.5 [24]. The rapidly increas-
ing configurational space, absence of any small parame-
ter, and need to resolve small energy differences make
this problem with more particles significantly more chal-

lenging if at all doable with methods used so far [25].

In this Letter we solve the 4+1 body problem and
show that it is characterized by its proper Efimov thresh-
old at M/m = αc(4, 1) = 13.279(2) giving rise to the
purely five-body Efimov effect in the range αc(4, 1) <
M/m < αc(3, 1). For M/m < αc(4, 1) we find a 4+1 non-
Efimovian pentamer which crosses the tetramer-atom
threshold at M/m = 9.672(6). We argue that consid-
ering the heavy-light dimer as a p-wave-attractive scat-
tering center for heavy atoms, one builds up the 2+1
trimer, 3+1 tetramer, and 4+1 pentamer by successively
filling the p-orbitals corresponding to three different pro-
jections of the angular momentum. The pentamer has
the LΠ = 0− symmetry and is the last element of the
p-shell. This picture is confirmed by our calculation of
the energy of the N+1-body system in a trap at a =∞.
We also include a finite effective range r0 into our analy-
sis and show that the dimer-trimer, trimer-tetramer, and
tetramer-pentamer crossings move towards smaller val-
ues of M/m with increasing the effective range. This
makes the 53Cr-6Li mixture (M/m = 8.80) promising
for observing the trimer, tetramer, and pentamer phases,
transitions among which being realized by tuning the ra-
tio r0/a and density imbalance.

In order to obtain these results we solve the integral
N+1-body Skorniakov–Ter-Martirosian (STM) equation
by running a stochastic diffusion in the configurational
space similar to the diffusion Monte Carlo (DMC). The
method, which we find to work extremely well, combines
advantages of STM and DMC, it requires no grid and
deals directly with zero-range interactions.

The STM equation was originally derived for the 2+1
mass-balanced problem [26]. Its generalization to the
N+1 body problem for negative total energy E in the
center-of-mass reference frame in three dimensions reads
[27]
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where µ = Mm/(M + m) is the reduced mass and r0

– effective range for the heavy-light interaction. The
function F (q1, ...,qN−1) can be considered as the rela-
tive wave function of N -1 heavy atoms with momenta
q1, ...,qN−1 and a heavy-light pair, the momentum of

which equals −
∑N−1
i=1 qi and is thus omitted from the

arguments of F . More precisely, the coordinate rep-
resentation of F is limr→RN

|r − RN |Ψ(R1, ...,RN , r),
where Ψ is the real-space wave function of the N+1 sys-
tem and the singular behavior Ψ ∼ 1/|r − RN | is as-
sumed to be true (or extrapolated) down to zero heavy-
light distance. In the left hand side of Eq. (1) one rec-
ognizes the denominator of the heavy-light scattering
t matrix at negative collision energy −~2κ2/2µ which
equals the total energy E minus the kinetic energy of
the heavy fermions and the heavy-light pair. Namely,
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can, in principle, take into account higher-order terms
in the effective-range expansion, but they compete with
the (here neglected) p-wave heavy-light and heavy-heavy
interaction corrections. It is convenient to regard E as a
parameter (together with r0 and M/m) and 1/a as the
eigenvalue to be found. One can then invert the function
a(E) in order to find the energy for a given a.

Note that F is antisymmetric in all its arguments, and
Eq. (1) does not break this antisymmetry. In addition,
Eq. (1) conserves the angular momentum L, its projec-
tion, and parity Π. One can factorize F into a product
of a known function g with the same symmetry as F and
an unknown function f , which depends only on mod-
uli of qi and angles between qi and qj . In particular,
for the 2+1 problem the relevant (for the Efimov effect
and universal trimer) symmetry is 1− [3], and choosing
mz = 0 one writes g(q) ∝ ẑ · q. In the 3+1 case the
relevant symmetry is 1+ and g(q1,q2) ∝ ẑ · q1 × q2

[22, 28]. In the 4+1 case we consider the 0− symmetry
with g(q1,q2,q3) ∝ q1 · q2 × q3. Substituting F = gf
into Eq. (1) one obtains STM equations, respectively, for
f(q1) in the 2+1 case, for f(q1, q2,q1 · q2) in the 3+1
case, and for f(q1, q2, q3,q2 · q3,q3 · q1,q1 · q2) in the
4+1 case. While the first two cases can be solved deter-
ministically by using grid methods, the six-dimensional
configurational space of the 4+1 problem is too large for
these methods to be sufficiently quantitative.

In order to overcome this problem we develop an ex-
act stochastic method of solving Eq. (1) inspired by the
DMC. We note that in the ground state f can be chosen

positive. The idea is then to set up a diffusion process
in space Q = {q1, ...,qN−1} such that in equilibrium the
detailed balance condition for the 3(N − 1)-dimensional
element dQ is nothing else than Eq. (1) and the equilib-
rium density distribution function equals f(Q). Let us
formally rewrite Eq. (1) as f(Q) =

∫
K(Q,Q′)f(Q′)dQ′,

where the kernel K(Q,Q′) > 0 depends on g(Q) [29]
and on parameters a, E, r0, M/m. We search for a at
fixed E, r0, and M/m. The diffusion process is orga-
nized as a series of iterations. The input of iteration i

is a set of N
(i)
w � 1 walkers with positions Q1,...,Q

N
(i)
w

and a guess for a, which we denote a(i). We then cal-
culate walker weights Wj =

∫
K(Q,Qj)dQ. Since Wj

depend on a, we can correct a at this stage such that∑N(i)
w

j=1 Wj does not deviate too much from an a priori
set average value Nw. We then duplicate each walker on
average Wj times and move each new child to a position
Q drawn from the normalized probability density distri-
bution K(Q,Qj)/Wj [30]. We thus arrive at an updated

walker pool with new N
(i+1)
w and a(i+1). The process

is repeated and, after a thermalization time, which is
typically a few tens of iterations, our control parameter
a(i) fluctuates around an average value 〈a〉 and walkers
sample f(Q). Strictly speaking this sampling would be
exact, if a(i) were the solution. However, fluctuations of
a(i) vanish in the limit of large walker number and we
have checked that 〈a〉 converges with increasing Nw [30].
The efficiency of this algorithm crucially depends on how
fast we calculate Wj and sample K(Q,Qj)/Wj . For a
generic kernel K(Q,Qj) this process would become slow
with increasing the dimensionality of Q, but we benefit
from the fact thatK is a sum ofN−1 terms which involve
integration (and sampling) only over coordinates of one
fermion [see Eq. (1)]. For sufficiently simple g(Q) these
tasks are partially analytic and numerically fast [30].

As the first application of the method let us discuss
the energies of bound N+1-body states for a > 0 ne-
glecting the effective range r0. In Fig. 1(a) from top to
bottom we show the trimer, tetramer, and pentamer en-
ergies E3, E4, and E5 in units of the heavy-light dimer
energy E2 = −~2/2µa2 as a function of M/m (the in-
set is a zoom-in into the region of their crossings). Our
trimer data perfectly reproduce the results of Kartavt-
sev and Malykh [3]. As far the tetramer is concerned,
we calculate the trimer-tetramer crossing more precisely
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Figure 1: (a) The trimer (dotted red), tetramer (dashed
green), and pentamer (solid blue) energies in units of the
dimer energy versus M/m (inset is a zoom-in into the crossing
region). (b) The trimer-tetramer threshold (∆E = E4 −E3).
(c) The tetramer-pentamer threshold (∆E = E5 − E4).

than the value α3,4 ≈ 9.5 found by Blume [23]. Our re-
sult α3,4 = 8.862(1) is obtained by fitting E4 at small
but finite M/m− α3,4 > 0 with the threshold law (E4 −
E3)/E2 = 0.011(α3,4 −M/m) + 0.014(α3,4 −M/m)3/2

[see Fig. 1(b)]. The branch-cut exponent 3/2 is related
to the density of states in the atom-trimer continuum
with unit angular momentum. We find that close to
αc(3, 1) the tetramer energy has the threshold behavior
E4/E2 ≈ 26(1)−85(2)

√
αc(3, 1)−M/m and we confirm

the value αc(3, 1) = 13.384 reported by Castin and co-
workers [22].

In the 4 + 1 sector we discover two phenomena: the
emergence of the universal pentamer state with 0− sym-
metry and the five-body Efimov effect in the same sym-
metry channel. We find that the pentamer crosses the
tetramer-atom threshold at α4,5 = 9.672(6) [see Fig. 1(c)]
and then stays bound up to the five-body Efimov thresh-
old αc(4, 1) = 13.279(2) close to which its energy behaves
as E5/E2 ≈ 67(3) − 310(20)

√
αc(4, 1)−M/m [outside

the vertical range in Fig. 1(a)].

We now discuss the Efimov thresholds for the N+1
systems in more detail. The transition from the
non-Efimovian to Efimovian regime in these systems
is driven by the mass ratio and is associated with
a qualitative change in the short-hyperradius behav-
ior of the real-space wavefunction Ψ(R1, ...,RN , r) (see
[22] and references therein). In brief, one rear-

ranges the relative coordinates into the hyperradius

R ∝
√
m(r−C)2 +M

∑N
i=1(Ri −C)2 (where C is the

center-of-mass coordinate) and a set of 3N − 1 hyperan-

gles R̂. At small R (where E and 1/a can be neglected)
the hyperradial motion separates from hyperangular de-
grees of freedom and is then governed by[
− ∂2

∂R2
− 3N − 1

R2

∂

∂R
+
s2 − (3N/2− 1)2

R2

]
Ψ(R) = 0,

(2)
where s2 is the hyperangular eigenvalue which depends
on M/m (and also on the symmetry of particles and their
number, but not on a or E). The general solution of
Eq. (2) is a linear combination of Ψ+(R) ∝ R−3N/2+1+s

and Ψ−(R) ∝ R−3N/2+1−s. The case s2 < 0 (s = is0)
corresponds to the Efimovian regime where this linear
combination is an oscillating function requiring a three-
body parameter to fix the relative phase of Ψ+ and Ψ−.
The non-Efimovian regime appears for s2 > 0 (s > 0)
where, far from few-body resonances, Ψ(R) can be set to
be equal to Ψ+(R) (see, however, [6, 16, 19]).

In order to determine s by using our method we note
that passing from real space to the Q-space the short-R
asymptote Ψ ∝ R−3N/2+1+s translates into the large-
Q asymptote F (Q) ∝ Q−3N/2+1−s. While running
our algorithm we accumulate statistics for the quantity
〈|F (Q)|〉Q̂ = 〈f(Q)|g(Q)|〉Q̂, i.e., every time a walker is

found in the bin (Q,Q + δQ) we add |g(Q̂)|/δQ to the
bin value if qi/Q is above a certain small fixed number
[30]. The resulting histogram is fit with the power law
Q−3N/2+1−s at large Q. In Fig. 2(a) we plot s2 as a
function of M/m for the trimer (red triangles), tetramer
(green circles), and pentamer (blue squares). In the
three-body case this dependence (dotted red) is found
exactly by solving a transcendental equation [5]. The
dashed green curve shows the result of our determinis-
tic grid calculation based on the method of Ref. [22].
The solid blue curve is the fit to the pentamer data
s2

4+1 = 7.96[αc(4, 1) − M/m] − 25.6[αc(4, 1) − M/m]2

with αc(4, 1) claimed earlier.
The parameter s in the non-Efimovian case is related

to another peculiar universal feature which manifests it-
self at unitarity (a =∞). In this case, the total energy of
the N+1 system confined to an isotropic harmonic poten-
tial of frequency ω (same for light and heavy particles)
equals ~ω(s + 5/2) [31, 32]. In order to compare con-
figurations with different N it is convenient to subtract
the energy 3~ω(N + 1)/2, which is the sum of zero-point
single-particle terms. This corresponds to a lattice model
with harmonic on-site confinement and vanishing inter-
site tunneling. In this model the dimer (1+1) and trimer
(2+1) energies cross at M/m = 8.6186, where s2+1 = 1
[5]. This means that for M/m < 8.6186 energetically
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Figure 2: (a) s2N+1 versus M/m close to the N+1-body Efi-
mov thersholds for N = 2 (red triangles), 3 (green circles),
and 4 (blue squares) calculated by our stochastic method.
The dotted red curve is exact, dashed green is the result
of our deterministic grid calculation based on the method of
Ref. [22], and solid blue is the linear+quadratic fit to the data.
(b) sN+1−3N/2+2, related to the energy of the trapped uni-
tary N+1 system, versus M/m. The color and symbol coding
is the same as in (a). The inset shows the crossing region in
more detail.

favorable is the configuration in which an on-site heavy-
light dimer is formed and any additional heavy atom
prefers to be elsewhere. For M/m > 8.6186 the light
atom is able to bind one more heavy atom forming an
on-site 2+1 trimer. Increasing the mass ratio further we
discover the trimer-tetramer crossing at M/m = 8.918(1)
and the tetramer-pentamer one atM/m ≈ 9.41(1) < α4,5

(we have no direct access to the latter crossing point since
it is in the region where the uniform-space pentamer is
unbound). The curves sN+1(M/m)−3N/2+2 are shown
in Fig. 2(b). Note that the case M/m = 0 reduces to the
problem ofN trapped fermions scattering on a zero-range
potential at the trap center. Analyzing the shell struc-
ture in this case one obtains sN+1 − 3N/2 + 2 = N − 1
for N ≤ 5.
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Figure 3: Mass ratios corresponding to the dimer-trimer
(dotted red), trimer-tetramer (dashed green), and tetramer-
pentamer (solid blue) crossings as a function of r0/a. Solid
curves are the linear+quadratic fit to the data. The dash-
dotted line is the 53Cr-6Li mass ratio.

Let us now discuss effects of finite effective range r0

and assume that the physical ranges of the heavy-heavy
and heavy-light potentials are ∼ r0. In this case the
effective-range expansion involving only a and r0 can be
used for calculating few-body observables only up to sec-
ond order in r0 after which it becomes necessary to in-
clude the p-wave heavy-heavy and heavy-light contribu-
tions (inducing energy shifts ∝ r3

0) and the next-order
(shape) correction to the s-wave heavy-light interaction,
which, for sufficiently short-ranged potentials, is of higher
order than r2

0 [33, 34]. By using our method we calcu-
late EN+1 for negative r0 and extrapolate the result to
the positive-r0 side limiting ourselves to quadratic terms
in r0 [35]. We find that all N+1-mers become more
bound with increasing r0. The mass ratios correspond-
ing to the dimer-trimer, trimer-tetramer, and tetramer-
pentamer crossings as a function of r0/a are shown in
Fig. 3. In view of these findings the 53Cr-6Li mixture
(M/m = 8.80) emerges as a very promising candidate
for observing these bound states; the tetramer turns out
to be almost exactly at the threshold for r0 = 0 and
one needs r0/a ≈ 0.06 in order to bind the pentamer.
Let us point out that, although rather weak, the mag-
netic dipole-dipole interaction between Cr atoms can be-
come an important factor in determining the energies and
crossings of these bound states (cf. [20]). These effects
require a separate investigation beyond the scope of this
paper.

Our results show that the trimer, tetramer, and pen-
tamer exhibit a remarkable pattern and seem to share
a few common features. In particular, they all cross in
a rather small window of mass ratios in free space with
finite a > 0 and in a trap at unitarity, their crossings
experience an almost parallel shift with r0, etc. In or-
der to understand this phenomenon consider a simpli-



5

fied model of an infinite-mass scattering center (dimer)
attracting heavy fermions in the p-wave channel. By
increasing the attraction one eventually obtains three
degenerate bound states which can be filled by heavy
fermions. In this model the trimer, tetramer, and pen-
tamer emerge simultaneously and their energies (relative
to the dimer one) scale in proportion 1 : 2 : 3. In our
case Figs. 1(a) and 2(b) show a similar behavior demon-
strating the shell structure. Based on this model and
on the fact that the pentamer closes the shell we con-
jecture that the 5+1 hexamer and larger clusters of this
kind (if bound) should exhibit a qualitatively different
behavior and qualitatively different Efimov thresholds (if
such thresholds exist). This argument adds importance
to the task of calculating the energy and scaling param-
eter for the 5+1 system since it is definitely too early to
directly extrapolate our results to N ≥ 5 (and eventually
to N →∞).
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