
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Catalytic Decoupling of Quantum Information
Christian Majenz, Mario Berta, Frédéric Dupuis, Renato Renner, and Matthias Christandl

Phys. Rev. Lett. 118, 080503 — Published 23 February 2017
DOI: 10.1103/PhysRevLett.118.080503

http://dx.doi.org/10.1103/PhysRevLett.118.080503


Catalytic Decoupling of Quantum Information

Christian Majenz,1, ∗ Mario Berta,2 Frédéric Dupuis,3 Renato Renner,4 and Matthias Christandl1
1Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø.

2Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA 91125, USA.
3Faculty of Informatics, Masaryk University, Brno, Czech Republic.

4Institute for Theoretical Physics, ETH Zurich, 8093 Zürich, Switzerland.
(Dated: January 9, 2017)

The decoupling technique is a fundamental tool in quantum information theory with applications
ranging from thermodynamics to many-body physics and black hole radiation, whereby a quantum
system is decoupled from another one by discarding an appropriately chosen part of it. Here we
introduce catalytic decoupling, i.e., decoupling with the help of an independent system. Thereby
we remove a restriction on the standard decoupling notion and present a tight characterization in
terms of the max-mutual information. The novel notion unifies various tasks, and leads to a resource
theory of decoupling.

Introduction. Erasing correlations between quantum
systems via local operations, decoupling, is a task that
was first studied in the context of quantum informa-
tion theory [1] (see [2] for an introductory tutorial). It
serves as a building block for a variety of tasks in quan-
tum information and quantum cryptography. In par-
ticular, decoupling has been crucial for understanding
how to distribute quantum information between differ-
ent parties [3–7] and for understanding how to send
quantum information over noisy quantum channels [8–
11], as well as randomness extraction [12]. The concept
is, however, also very useful in physics (as, e.g., out-
lined in [13]). Applications range from quantum ther-
modynamics [14–16], to the study of black hole radia-
tion [17–19], and solid state physics [20].

Standard decoupling. The basic idea behind decou-
pling is the following: If a mixed bipartite quantum
state $AE is only weakly correlated, then it should suf-
fice to erase a small part of A to approximately decou-
ple A from E, i.e., to get an approximate product state
(see Figure 1a). More precisely, we say that a bipartite
quantum state $AE is ε-decoupled by the partial trace
map TA→A1(·) = TrA2 [·] with A = A1 A2 if there exists
a unitary operation UA such that,

min
ωA1
⊗ωE

P
(
TA→A1(UA$AEU†

A), ωA1 ⊗ωE
)
≤ ε, (1)

where the minimum is over all product quantum states

ωA1 ⊗ ωE, and P(β, γ) :=
(
1− ‖

√
β
√

γ‖2
1
)1/2 denotes

the purified distance [21]. The A1-system is called the
decoupled system and the A2-system the remainder
system – when trying to decouple A from E, we succeed
on A1, and A2 is the remainder we fail to decouple. The
fundamental question that we want to discuss is how
large we have to choose the remainder system A2 in or-
der to achieve ε-decoupling. We denote the minimal re-
mainder system size, i.e., the logarithm of the minimal
remainder system dimension, for ε-decoupling A from

E in a state $AE by Rε(A; E)$. For a formal definition of
Rε(A; E)$ see Supplemental Definition 18.

Converse. We first show quite naturally that
Rε(A; E)$ has to be at least of the size of the smooth
max-mutual information Iε

max(E : A)$ present in the
initial state $AE. This measure is defined as [11],

Iε
max(E; A)$ := min

$̄
Imax(E; A)$̄ with (2)

Imax(E; A)$̄ := log min {TrσA|σA ⊗ $̄E ≥ $̄AE} , (3)

where the minimum in (2) is over all bipartite quan-
tum states with P($AE, $̄AE) ≤ ε [22], and the minimum
in (3) is over all σA ≥ 0. We note that the definition of
the smooth max-information is a priori not symmetric
in A : E. However, we have [23],

Iε
max(E; A)$ ≈ Iε

max(A; E)$, (4)

where ≈ stands for equality up to terms O(log(1/ε)).
For the converse we exploit that the smooth max-
mutual information is invariant under local unitary op-
erations and that it has the so-called non-locking prop-
erty (see [24] about information locking). That is, just
like the quantum mutual information it fulfills the in-
equality [11, Lemma B.12],

Iε
max(E; A1 A2)$ ≤ Iε

max(E; A1)$ + 2 log |A2|, (5)

where |A2| denotes the dimension of A2. Since the final
state is a product state, its smooth max-mutual infor-
mation Iε

max(E; A1)ω⊗ω becomes zero. This means that
in order to erase the initial correlations Iε

max(E; A)$ we
need at least a remainder system of size [25],

Rε(A; E)$ ≥
1
2

Iε
max(E; A)$. (6)

Previous works. Most of the aforementioned decou-
pling references only give good achievability bounds
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for states of the form $AnEn = $⊗n
AE in the asymptotic

limit n → ∞. Whereas this setting is relevant in quan-
tum Shannon theory, it is often a severe restriction for
applications in physics. For typical physical situations
(e.g., in thermodynamics), there is usually not even a
natural decomposition of a large system in n subsys-
tems. A notable exception concerning achievability re-
sults is reference [13], where the authors show that

Rε(A; E)$ .
1
2

(
Hε′

max(A)$ − Hε′
min(A|E)$

)
with ε′ =

ε

5
,

(7)

where . means up to terms O(log(1/ε)) here. (We give
a proof of this particular statement in the supplemen-
tal material). Here, Hε

max and Hε
min denote the smooth

conditional max- and min-entropy whose exact defini-
tions can be found in the supplemental material (or see
the textbook [21]). In fact, the results from [13] show
that not only decoupling in the sense of (1) is achieved,
but moreover that the decoupled system is also ran-
domized. That is, there exists a quantum state ωE and
a unitary operation UA such that Equation (1), with
ωA1 = 1A1 /|A1| and where 1A1 denotes the identity
matrix on A1.

It turns out that there can be an arbitrarily big gap be-
tween the converse (6) and the achievability result (7).
This is best seen for an example with trivial system E,
where the corresponding max-mutual information con-
verse bound becomes zero. In that case the achievability
bound (7) reduces to the difference between the smooth
max- and min-entropy and it is known that this can
become roughly as big as log |A| (we provide an ex-
plicit example in the supplemental material). In order
to achieve the converse from (6) we propose in the fol-
lowing a generalized notion of decoupling.

Catalytic decoupling. A natural question to ask at this
point is if decoupling can be achieved more efficiently
in the presence of an already uncorrelated ancilla sys-
tem (see Figure 1). Formally, we say that a bipartite
quantum state $AE is ε-decoupled catalytically by the
ancilla state $A′ and the partial trace map TĀ→A1

(·) =

TrA2 [·] with Ā ≡ AA′ ∼= A1 A2 if there exists unitary
operation UĀ such that,

min
ωA1
⊗ωE

P
(
TĀ→A1

(UĀ$ĀEU†
Ā), ωA1 ⊗ωE

)
≤ ε (8)

where $ĀE = $AE ⊗ $A′ . (9)

Again, we call the A1-system the decoupled system and
the A2-system the remainder system. The term catalytic
means that the share of the initially uncorrelated ancilla
system A′, that becomes part of the decoupled system
A1, stays decoupled (see Figure 1).

Now, we are interested in the minimal size of the re-
mainder system A2 in order to achieve ε-decoupling
catalytically. We denote the minimal remainder sys-
tem size for catalytically decoupling A from E in a
state $AE by Rε

c(A; E)$. For a formal definition of
Rε

c(A; E)$ see Supplemental Definition 19. Clearly, we
have Rε

c(A; E)$ ≤ Rε(A; E)$, as we can always choose
a trivial ancilla. Moreover, since appending with an
ancilla does not change the smooth max-mutual infor-
mation (see supplemental material), the same converse
as in (6) still holds.

One may analyze decoupling using a resource-
theoretic approach, treating decoupled systems as a
resource. A quantum system A coupled to the envi-
ronment E can yield a decoupled system A1 of a cer-
tain size through standard decoupling. That is, in the
resource theory language of [26] we have 〈$AE〉 ≥ε

(log |A| − Rε(A; E)$)[d]. Here, x[d] denotes x decou-
pled qubits and ≥ε stands for up to error ε (see
also [27]), while the set of free operations is given by
the unitary operations [28]. Now, our novel paradigm
makes use of the possibility that if we already have de-
coupled qubits, then we are able to decouple a larger
system [29],

〈$AE〉+ n[d] ≥ε

(
n + log |A| − Rε

c(A; E)$

)
[d]

for n large enough. (10)

Note, however, that this inequality is only proved for
specific initial and final decoupled states used in the pre-
sented decoupling protocols.

Tight achievability. In contrast to standard decou-
pling as in (1), catalytic decoupling can be achieved
with a remainder system size that is essentially equal
to the smooth max-mutual information.

Theorem 1 (Catalytic decoupling). For any bipartite
quantum state $AE and 0 < δ ≤ ε ≤ 1 we have:

Rε
c(A; E)$ .

1
2

Iε−δ
max(E; A)$ (11)

where . stands for smaller or equal up to terms
O(log log |A|+ log(1/δ)). We also have the converse

Rε
c(A; E)$ ≥

1
2

Iε
max(E : A)$. (12)

Note that the converse comes from Equation (6).
In fact, we not only show that catalytic decoupling in

the sense of (8) is achieved, but moreover that the de-
coupled system ends up in the marginal of the original
state:

P
(
$A1E, $A1 ⊗ωE

)
≤ ε for some quantum state ωE.

(13)
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FIG. 1. Schematic representation of a) standard and b) catalytic decoupling: tracing out a system A2 leaves the remaining
state decoupled. While there is no ancilla for standard decoupling as in a), catalytic decoupling as in b) allows to make use of
an additional, already decoupled system A′. The basic question is how large we have to choose the system A2 such that the
remaining system A1 is decoupled from E.

In particular, and in contrast to the standard decoupling
results leading to (7), our catalytic decoupling scheme
does not randomize the decoupled system but leaves
it invariant (up to the approximation error ε). We can
even choose A1 = AA′1 such that the decoupled system
contains the marginal of the input state (A) (plus part
of the catalyst, A′1).

In the supplemental material we give two conceptu-
ally different proofs for Theorem 1. The first proof is
based on the standard decoupling techniques from [11,
13] combined with the use of embezzling entangled
quantum states [30]. For (11) this yields a difference of
size at most log log |A|+O(log(1/δ)) [31]. The second
proof is based on the convex splitting technique of An-
shu et al. [32]. It allows to upper bound the difference
in (11) with the tighter bound

Rε
c(A; E)$ −

1
2

Iε−δ
max(E; A)$ ≤

1
2

{
log log Iε−δ

max(E; A)$

}
+

+O(log(1/δ)) , (14)

where {·}+ := max{0, ·}. Moreover, this argument is
constructive and hence leads to an explicit scheme for
decoupling. This improves on the standard decoupling
bounds which are achieved using the probabilistic tech-
nique [33] (as, e.g., the previously best known bound (7)
from [13]).

Discussion. The achievability result (11) together
with the converse (12) establish an operational inter-
pretation of the smooth max-information as twice the
minimal size of the remainder system to achieve ε-
decoupling. We note that the approximation error as
well as the smoothing parameter can be made arbitrar-

ily close in (12) and (11) with only a logarithmic penalty.
This enables us to make a statement about the case
of many independent copies of a state, the so called
i.i.d. setting. Following the information-theoretic ar-
guments outlined in [34] (which in turn are based on
ideas from [35, 36]), we find that for states of the form
$AnEn = $⊗n

AE and large n→ ∞,

1
n

Rε
c(An; En)$⊗n

=
1
2


I(A : E)$ +

√
V(A : E)$

n
Φ−1(ε)


+O

(
log n

n

)
,

(15)

with the mutual information I(A : E)$ = H(A)$ +
H(E)$ − H(AE)$ featuring the von Neumann entropy
H(A)$ = −Tr($A log $A), and the mutual information
variance V(A : E)$ as well as the cumulative normal
distribution function Φ specified in the supplemental
material. We note that no such tight (second-order)
asymptotic expansion is known for standard decou-
pling. However, the achievability (7) together with the
converse (6) imply that (using the asymptotic equipar-
tition property from [21]),

lim
n→∞

1
n

Rε(An; En)$⊗n =
1
2

I(A : E)$ for 0 < ε < 1. (16)

Thus, we can conclude that catalytic decoupling and
standard decoupling become equivalent in the first or-
der rate asymptotically: the mutual information quan-
tifies the minimal size of the remainder system.
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Applications. We are now going to illustrate the use
of catalytic decoupling with various applications. Gro-
isman et al. [37] introduced an operational approach to
quantifying the total correlations that are present in a
quantum state. In analogy to Landauer’s erasure prin-
ciple [38], they characterize the strength of correlations
by the amount of randomness that has to be injected
locally to decorrelate the state. This randomizing is
done by a random-unitary channel on one of the sys-
tems (called local unitary randomizing, A-LUR in [37]):

Λ(·) =
N

∑
i=1

piUi(·)U†
i . (17)

We say that that the correlations between A and E in a
state $AE can be ε-erased by a local mixture of N uni-
taries on A, if ΛA ε-decouples A from E. That is, if there
exists a quantum channel ΛA of the form (17) such that

min
ωA⊗ωE

P (ΛA($AE), ωA ⊗ωE) ≤ ε. (18)

We denote the logarithm of the minimal number of uni-
taries needed for ε-erasing the correlations between A
and E in a state $AE by Rε

U(A; E)$. For a formal defini-
tion of Rε

U(A; E)$ see Supplemental Definition 20. Gro-
isman et al. show that for states of the form $AnEn = $⊗n

AE
for large n→ ∞:

lim
ε→0

lim
n→∞

1
n

Rε
U(An; En)$⊗n = I(A : E)$. (19)

In the following we will see that the task of cat-
alytic local erasure of correlation becomes equivalent
to catalytic decoupling [39]. We therefore define
Rε

U,c(A; E)$ := inf Rε
U(AA′ : E)$⊗σ, where the infimum

is taken over all ancilla systems. This quantity is for-
mally defined in Supplemental Definition 20.

Proposition 2 (Erasure of correlations). For any bipar-
tite quantum state $AE we have 1

2 Rε
U,c(A; E)$ = Rε

c(A; E)$.
Hence, we get

Iε
max(E; A)$ ≤ Rε

U,c(A; E)$ . Iε−δ
max(E; A)$. (20)

where . stands for smaller or equal up to terms
O(log log |A|+ log(1/δ)). The same asymptotic expansion
as in (15) holds.

This is the generalization of the results in [37] to ar-
bitrary (structureless) states (see also [9, 35, 36]). It
gives an alternative operational characterization of the
smooth max-mutual information as the the minimal
number of unitaries needed for ε-erasing the correla-
tions between A and E. The proof of Proposition 2

proceeds as follows. Suppose we have a way of de-
coupling A from E with remainder system A2, and let

|A2| = 2k for some k ∈ N. Then, we can think of A2
as k qubits and erase each of them applying a uniform
mixture of the Pauli matrices and the identity. This is
a mixture of 4k = 22k unitaries. Conversely, suppose
we have a mixture of N = 22k unitaries on A that erase
the correlations to E. We take the mixed ancilla state
1A′1 A′2

/|A′1 A′2| with A′i ∼= C2k
. Now, we apply the uni-

taries controlled on an orthonormal basis of maximally
entangled states of A′1 A′2. Then, A′1 A are decoupled
from E, i.e., we achieved catalytic decoupling with re-
mainder system size log |A′2| = k [40].

As a second application we discuss quantum state
merging [1] in whose context decoupling was originally
introduced [3, 4]. In the communication task of state
merging, Alice, Bob and a Referee share initially a pure
quantum state ψABR. Now Alice has to send her sys-
tem A to Bob using as little communication as possible.
Any catalytic decoupling theorem naturally leads to a
quantum state merging protocol. Since the catalytic de-
coupling theorem is the abstraction of the results on
quantum state merging in [11, 32], inserting the bounds
from Theorem 1, we recover the following optimal re-
sult for the communication cost qε(A〉B)$ of merging A
to B (up to error ε > 0, see Supplemental Definition 31

for a formal definition).

Proposition 3 (Coherent quantum state merging). Let
$ABR be a pure tripartite quantum state shared between Al-
ice, Bob and a Referee. If Alice and Bob have arbitrary entan-
glement assistance at hand, then Alice can send her system
A to Bob up to error ε > 0 in purified distance using

qε(A〉B)$ .
1
2

Iε/3
max(R;A)$ (21)

qubits of quantum communication, where . stands for
smaller or equal up to terms O(log log |A|+ log(1/δ)).

We note that in the asymptotic limit standard decou-
pling is sufficient to obtain,

lim
n→∞

1
n

qε(An〉Bn)$⊗n =
1
2

I(R : A)$, (22)

which is optimal [4]. For the general setup there is an
issue known as entanglement spread [41], and for the
proof of Proposition 3 we make use of catalytic decou-
pling and Uhlmann’s theorem [42]. In the following we
present a proof sketch but defer the full argument to the
supplemental material. Setting δ = ε/6 in Theorem 1

shows that there exists an ancilla state $A′ and a unitary
UAA′→A1 A2

such that A1 is ε/2 decoupled from R and

log |A2| .
1
2

Iε/3
max(R : A)$ (23)
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Now, Alice and Bob take a pure entangled state $A′B′

where Alice’s part A′ is in state $A′ , the required an-
cilla. She applies the unitary UAA′→A1 A2

and sends
A2 to Bob. The decoupling condition and the tri-
angle inequality for the purified distance imply that
P($A1R, $A1 ⊗ $R) ≤ ε, so by Uhlmann’s theorem there
exists a unitary UA2B→ABB1 acting on Bobs system such
that

P(U$A1 A2BRU†, $A1B1 ⊗ $ABR) ≤ ε, (24)

where $A1B1 is a purification of $A1 and we omitted the
subscript of U. This implies that Bob has systems AB
after applying U.

Finally, we show in the supplemental material that
catalytic decoupling directly implies the achievability
bound for quantum state redistribution of Anshu et
al. [32] (see [43, 44] for alternative bounds).

Extensions. We have analyzed how well the partial
trace map TA→A1(·) = TrA2 [·] decouples. However, as
originally suggested in [13], we can also study quantum
channels TA→B(·) that add noise in an arbitrary way
in order to achieve decoupling. To further clarify the
important difference between standard decoupling and
catalytic decoupling, as well as to correct the faulty [13,
Corollary 4.2], we now give a converse for the decou-
pling behavior of general quantum channels.

Proposition 4 (Correction of Corollary 4.2 from [13]). If
for a bipartite quantum state $AE and a quantum channel
TA→B,
∫

dUAP
(
TA→B(UA$AEU†

A), TA→B

(
1A
|A|

)
⊗ $E

)
≤ ε,

(25)

then we have

Hε′
min(A|E)$ + Hε

max(A′|B)τ & 0 with ε′ = 15
√

ε, (26)

where τA′B = TA→B(φ
+
A′A) is the Choi-Jamiołkowski state.

In the supplemental material we prove Proposi-
tion 4 starting from [13, Theorem 4.1] (from which the
faulty [13, Corollary 4.2] was derived). The crucial dif-
ference of Proposition 4 to the erroneous version is the
assumption that not only decoupling, but decoupling
and randomizing is achieved:

TA→B ($A)⊗ $E vs. TA→B

(
1A
|A|

)
⊗ $E. (27)

For example, a product state $AE = $A ⊗ $E with $A
pure has Hε′

min(A|E)$ = 0. It is, however, already per-
fectly decoupled by the identity map on A, which has
Hε

max(A|B)τ ≈ − log |A|.

In turn, applying the converse bound (26) to the par-
tial trace map TA→A1(·) = TrA2 [·] shows that the stan-
dard decoupling bound (7) in terms of a difference of
smooth max- and min-entropy is natural if we ask for
decoupling and randomizing. However, if we are not
interested in randomizing but only in decoupling, then
our main result about catalytic decoupling (Theorem 1)
shows that the smooth max-mutual information is the
relevant measure.

Conclusion. In this work we introduced the notion
of catalytic decoupling. As our main result we estab-
lished that the minimal remainder system size for de-
coupling is given by half the smooth max-mutual infor-
mation. Moreover, we have shown that catalytic decou-
pling for general (structureless) states naturally quan-
tifies the resources needed in the erasure of correla-
tion model from [37] and for quantum state merging as
in [11]. All of this strengthens the smooth max-mutual
information as the one-shot generalization of the quan-
tum mutual information. Finally, given that standard
decoupling has already proven useful in various areas
of physics (see the references in the introduction), we
believe that catalytic decoupling has manifold applica-
tions that remain to be explored.
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