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Machine learning is a fascinating and exciting field within computer science. Recently, this ex-
citement has been transferred to the quantum information realm. Currently, all proposals for the
quantum version of machine learning utilize the finite-dimensional substrate of discrete variables.
Here we generalize quantum machine learning to the more complex, but still remarkably practical,
infinite-dimensional systems. We present the critical subroutines of quantum machine learning al-
gorithms for an all-photonic continuous-variable quantum computer that can lead to exponential
speed-ups in situations where classical algorithms scale polynomially. Finally, we also map out an
experimental implementation which can be used as a blueprint for future photonic demonstrations.

Introduction — We are now in the age of big data [1].
An unprecedented era in history where the storing, man-
aging and manipulation of information is no longer effec-
tive using previously techniques. To compensate for this,
one important approach in manipulating such large data
sets and extracting worthwhile inferences, is by utiliz-
ing machine learning techniques. Machine learning [2, 3]
involves using specially tailored ‘learning algorithms’ to
make important predictions in fields as varied as finance,
business, fraud detection, and counter terrorism. Tasks
in machine learning can involve either supervised or unsu-
pervised learning and can solve such problems as pattern
and speech recognition, classification, and clustering. In-
terestingly enough, the overwhelming rush of big data in
the last decade has also been responsible for the recent
advances in the closely related field of artificial intelli-
gence [4].

Another important field in information processing
which has also seen a significant increase in interest in
the last decade is that of quantum computing [5]. Quan-
tum computers are expected to be able to perform cer-
tain computations much faster than any classical com-
puter. In fact, quantum algorithms have been developed
which are exponentially faster than their classical coun-
terparts [6, 7]. Recently, a new subfield within quantum
information has emerged combining ideas from quantum
computing with artificial intelligence to form quantum
machine learning [8].

These discrete-variable schemes have observed a per-
formance that scales logarithmically in the vector dimen-
sion, such as supervised and unsupervised learning [9],
support vector machine [10], cluster assignment [11] and
others [12–18]. Initial proof-of-principle experimental
demonstrations have also been performed [19–22]. It was
mentioned in [23], that certain caveats apply to quan-
tum machine learning. However, since then these caveats
(relating to sparsity, condition number, epsilon precision,
quantum output), have been closed or applications found
where they are not a concern, cf. [8, 10, 18, 24].

In this paper, we have developed learning algorithms
based on a different, but equally important, type of sub-
strate in quantum computing, those of continuous vari-
ables (CVs) [25, 26]. A CV system is characterized by
having an infinite-dimensional Hilbert space described by
measuring variables with a continuous eigenspectra. The
year 1999 saw the first important attempt at developing a
CV model of quantum computing [27]. Seven years later,
the cluster state version [28] of CVs [29, 30], accelerated
the field due to experimental interest. The result were
proof-of-principle demonstrations [31–34], which culmi-
nated in a time domain one-million-node cluster [35, 36]
and a 60-node frequency domain cluster [37]. Further
important theoretical work was also carried out [38–47],
including an important CV architecture that was fault
tolerant [48].

Here, we take advantage of the practical benefits of
CVs (high-efficiency room-temperature detectors, broad
bandwidths, large-scale entanglement generation) by
generalizing quantum machine learning to the infinite
dimension. Specifically, we develop the important CV
tools and subroutines that form the basis of the quan-
tum speedup. This includes matrix inversion, principle
component analysis and vector distance. Furthermore,
each of these crucial subroutines are given a finite squeez-
ing analysis for future experimental demonstrations along
with a suggested photonic implementation.
Quantum Machine Learning for Continuous Variables

— The general quantum state of an n-mode system is
given by |f〉 =

∫
f(q1, . . . , qn)|q1〉 ⊗ . . . |qn〉dq1 . . . dqn. If

we use this state to encode a discrete set of classical data,
a ≡ {ax;x = 1, . . . , N}, which requires at least N classi-
cal memory cells, only n = logdN modes are sufficient,
i.e.,

fa(q1, . . . , qn) =

N∑
x=1

ax

n∏
i=1

ψxi(qi) (1)

where d is the number of basis states in each mode;
x = (x1x2 . . . xn) is a d-nary representation of x; ψj(q) ≡
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〈q|ψj〉 for j = 1, . . . , d is the wavefunction of the jth sin-
gle mode basis state, |ψj〉. Here we assume the vector a
is normalised.

Obtaining the classical value of each data ax still re-
quires O(N) copies of |fa〉. Nevertheless in some ap-
plications only the global behavior of the data set is
interesting. For example, the value 〈fa|F̂ |fa〉 can be
computed efficiently by a quantum computer with sig-
nificantly fewer copies of |fa〉 [23]. Quantum machine
learning algorithms take advantage of this property to
reduce the amount of memory and operations needed.

If the data set a is sufficiently uniform, it is known that
|fa〉 can be efficiently generated. As an illustration, we
outline in the Supplementary Section an explicit proto-
col to generate a state with d = 2 coherent basis states,
|ψ1〉 = |α〉 and |ψ2〉 = | − α〉. Our protocol generalizes
the discrete variable method in Ref. [49] to CV systems
by utilizing the CV implementation of the Grover’s op-
erator, eiφ|ψ〉〈ψ| for any given |ψ〉, as well as the efficient
generation of cat states and coherent states [50].

The encoding state construction of general non-
uniform data could be constructed by extending the
discrete-variable quantum RAM (qRAM) [51] to a CV
system, or by using a hybrid scheme [52], although the
state generation efficiency of such a general encoded state
remains an open question [23, 53]. Nevertheless, the ver-
satility of CV machine learning is not limited to process-
ing classical data sets that involve a discrete number of
data. In the context of universal CV quantum computa-
tion, the output of a computer is a CV state that evolves
under an engineered Hamiltonian [27]; the wave function
of such a full CV output cannot be expressed in the form
of Eq. (1). As we will see, the CV machine learning sub-
routines are capable of processing even full CV states,
and therefore have certain problems that they are more
suited to than qubits [54].

In both the data state construction and the quantum
machine learning operation, the generalized Grover’s op-
erator, eiρ

′t, plays the main role of inducing a phase shift
according to an ensemble of unknown given states ρ′.
As suggested in Ref. [11], such an operation can be im-
plemented by repeatedly applying the exponential swap
operation and tracing out the auxiliary mode, i.e.,

trρ′(e
iδtSρ⊗ ρ′e−iδtS) = eiδtρ

′
ρe−iδtρ

′
+O(δ2) , (2)

where by definition the swap operator functions as
S|ψ1〉|ψ2〉 = |ψ2〉|ψ1〉.

Here we outline the procedure of implementing the ex-
ponential operator with standard CV techniques. First of
all, we need a qubit as control, which can be implemented
by two auxiliary modes, 1 and 2, with one and only one
photon in both modes, i.e., the state of the modes is
cos θ|01〉+ i sin θ|10〉. The rotation angle θ is controllable

by applying the rotation operator R(θ) ≡ eiθ(â1â
†
2+â

†
1â2),

which can be implemented by linear optics [50]. In addi-

tion, we need a controlled-swap operation,

Ccc
′

S = e−
π
4 (âcâ

†
c′−â

†
câc′ )eiπâ

†
1â1â

†
câce

π
4 (âcâ

†
c′−â

†
câc′ ) (3)

which swaps the modes c and c′ depending on the photon
number of the control qubit. The operations in Ccc

′

S can
be implemented with the quartic gate introduced in [38,
47]. See Supplementary Material for more detail.

The control qubit is first prepared in |+〉 ≡ (|01〉 +
|10〉)/

√
2. By applying the operations in sequence

exp(iθS) = Ccc
′

S R(θ)Ccc
′

S , the state becomes

Ccc
′

S R(θ)Ccc
′

S |+〉|ψ〉c|φ〉c′ = |+〉eiθScc′ |ψ〉c|φ〉c′
≡ |+〉(cos θ|ψ〉c|φ〉c′ + i sin θ|φ〉c|ψ〉c′) . (4)

The method can be generalized to implement a multi-
mode exponential swap, exp(iθScc′Sdd′ . . .), by applying
Ccc

′

S Cdd
′

S . . . R(θ)Ccc
′

S Cdd
′

S . . .. We note that the precious
resources of a single photon state is not measured or dis-
carded, so it can be reused in future operations.

We emphasize that, in stark contrast to the proposed
implementation of exponential-swap gate in [11] which is
logical and thus composed by a series of discrete variable
logic gates, our implementation of the exponential-swap
gate is physical, i.e., it can be applied to full CV states
that could not be written as the discrete variable form in
Eq. (1). This property allows our subroutine to be ap-
plied in, e.g., quantum tomography of CV states, which is
more complicated than the discrete variable counterparts
due to the large degree of freedom.

CV Quantum Machine Learning Algorithms — We
now discuss several key subroutines (matrix inversion,
principle component analysis, and vector distance) that
power the quantum machine learning problems using the
tools we have just introduced.

a. Matrix inversion — Various machine learning appli-
cations involves high-dimensional linear equations, e.g.,
Ay = b. The advantage of some quantum machine learn-
ing algorithms is the ability to solve linear equations effi-
ciently. Specifically, for any vector b =

∑
i biei, comput-

ing the solution vector y = A−1b =
∑
i bi/λiei is more

efficient on a quantum computer [12].
In a CV system, the algorithm starts by preparing the

state |b〉 and two auxiliary modes in the q quadrature
eigenstates, i.e., |0〉q,R and |0〉q,S . We apply the opera-
tor exp(iδγAp̂Rp̂S) 1/δ times. Each operator can be im-
plemented based on Eq. (2), and a modified exponential
swap gate with the rotation operator in Eq. (4) replaced
by the four-mode operator

R(γp̂Rp̂S) = eiγp̂Rp̂S(â1â
†
2+â

†
1â2) , (5)

which can be implemented efficiently [38]. The state then
becomes

eiγAp̂Rp̂S |b〉|0〉q,R|0〉q,S =
∑
i

bi

∫
|ei〉|p〉p,R|γλip〉q,Sdp,

(6)
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where we have neglected a normalization constant. If the
S auxiliary mode is measured in the q quadrature with
outcome qS , then we get∑

i

bi/λi|ei〉|qS/γλi〉p,R . (7)

Up to the normalization, the solution state |y〉 =∑
i bi/λi|ei〉 is obtained if the R auxiliary mode is mea-

sured in the q quadrature and we get the result qR = 0.
In the infinitely squeezed case, which the operation is

errorless, the successful rate of the last measurement is
vanishing. In practice, however, we can employ squeezed
vacuum states as auxiliary modes if we permit a small
error ε. The successful rate of obtaining an answer
state then scales as O(ε3/2), which is comparable to the
discrete-variable algorithm that has success which scales
as O(ε) [10]. The detailed argument is shown in the Sup-
plementary Section.

b. Principal component analysis — The next problem
is to find the eigenvalue λ corresponding to a unit eigen-
vector ei with respect to the matrix A, i.e., Aei = λiei.
This problem is ubiquitous in science and engineering
and can also be used in quantum tomography, supervised
learning and cluster assignment.

The algorithm starts from a data state |ei〉 and an
auxiliary mode R prepared as the zero eigenstate of the
q quadrature, |0〉q,R. The idea of the algorithm is to
apply the operator eiγAp̂R that displaces the auxiliary
mode according to the eigenvalue, i.e.,

eiγAp̂R |ei〉|0〉q,R = |ei〉eiγλip̂R |0〉q,R = |ei〉|γλi〉q,R ,
(8)

then the eigenvalue can be obtained by measuring the
auxiliary mode with homodyne detection. This opera-
tor can be implemented by preparing an ensemble such
that the density matrix is ρ′ = A/trA, and repeatedly
apply the techniques in Eq. (2) to implement eiδAp̂R ,
for γtrA/δ times. Here the argument of the exponen-
tial swap operator is not a c-number but an operator
p̂R. This can be implemented by replacing the rotation
operator in Eq. (4) by the three-mode operator

R(p̂R) = eiδp̂R(â1â
†
2+â

†
1â2) , (9)

which can be efficiently implemented by a cubic phase
gate and linear optics [27, 38].

In practice, the success of the algorithm relies on the
distinguishability of |γλi〉q, which depends on the spec-
trum of eigenvalues, the degree of squeezing s of the aux-
iliary state, and the magnitude of error. In the Supple-
mentary Section, we have shown that O(1/ε) operations
are needed for an error ε . 1/(γ2s).

c. Vector distance — In supervised machine learning,
new data is categorized into groups by its similarity to
the previous data. For example, the belonging category
of a vector u is determined by the distance, D, to the

average value of the previous data {vi}. The objective
of a quantum machine learning algorithm is to compute
the value D2 ≡ |u−

∑M
i=1 vi/M |2.

Following the approach given in Ref. [10], we assume
an oracle can generate the state

|Ψ〉 =
1

N

(
|u||0〉I |ũ〉+

1√
M

M∑
i=i

|vi||i〉I |ṽi〉
)
, (10)

where the first mode is denoted as the index mode I; the
normalization N ≡

√
|u|2 +

∑
i |vi|2/M is supposed to

be known. D2 can be obtained by conducting a swap
test on the index mode with a reference mode prepared
as |Φ〉R ≡ (|0〉R −

∑M
i=1 |i〉R/

√
M)/
√

2. Various swap
tests for CV systems have been proposed where the result
is obtained from a photon number measurement [55, 56].
Here we propose a swap test that employs only homodyne
detection and an exponential swap operation.

We consider two test modes that are prepared in the
coherent states |β〉1|0〉2. The operator exp(iπ4S12SIR) is
applied to exponential swap the two test modes, as well
as the reference and the index modes. After that, the test
modes pass through a 50/50 beam splitter. The density
operator of the test modes after tracing out the other
modes becomes

ρ12 =
1

2

(
| β√

2
〉11〈

β√
2
|+ iD2| β√

2
〉11〈
−β√

2
| (11)

−iD2|−β√
2
〉11〈

β√
2
|+ |−β√

2
〉11〈
−β√

2
|
)
⊗ | β√

2
〉22〈

β√
2
| .

We find that if the 1 mode is homodyne detected in the
p quadrature and β & 4, the probability difference of
measuring a positive and negative outcome scales as D2,
where the scaling constant is at the order of 0.1 for a wide
range of β. See the Supplementary Section for further
details.
All-Photonic Implementation — We outline an all-

photonic implementation of the previously mentioned
machine learning algorithms. First, one must create an
ancillary state for use in the exponential swap gate. One
method is to provide a heralded ancilla via parametric
down conversion (see for example [50], for a background).
The undetected photon is interfered with the vacuum on
a 50/50 beam splitter in order to place it in the super-
position required for Eq. (4) (see Fig. 1). This serves as
an input to the phase-dependent gates outlined in [38],
which can be used to construct the exponential swap
gate. The rotation gate in Eq. (4) is essentially the in-
terference of the two modes on a variable reflectivity, or
programmable beam splitter, which can be achieved via
polarization control and a polarizing beam splitter, or via
a collection of phase or amplitude modulators. Inverse
phase-dependent gate operations are implemented after
the rotation.

Each algorithm essentially utilizes a variation of this
configuration, in addition to the possibility of squeezed
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FIG. 1. All-photonic implementation schematic of the operator exp(iθS) = Ccc′
S R(θ)Ccc′

S . We initially have an ancillary input
mode |+〉 = (|01〉 + |10〉)/

√
2 with two (swap) modes C and C′ used to implement the operators given in Eq. 4. The method

for generating |+〉 is one of many possibilities, e.g., preparing a heralded superposition of polarization states is illustrated.

χ(2): nonlinear crystal source; APD: avalanche photodiode detector; 50/50: balanced beam splitter; λ/2: half wave plate; PBS:

polarizing beam splitter; CCC′
S : controlled-swap operator; R(θ): rotation operator; see text for explanation of operators. Note

that Ccc′
S can be implemented with the quartic gate [38, 47] and R(θ) can be efficiently implemented using linear optics.

ancilla in order to increase the accuracy of the result.
The principle component analysis problem replaces the
variable beam splitter in the swap gate with a two-mode
quantum-non-demolition phase gate. It can be imple-
mented by treating the auxiliary mode, R, as the ancilla
in the phase-dependent gate. Thus, the principle com-
ponent analysis problem essentially relies on repeated
application of the ‘repeat-until-success’ phase gate [38].
In a realistic scenario, R is in a single-mode squeezed
state with finite squeezing (see Supplementary Section),
which is experimentally straightforward using a below-
threshold optical parametric amplifier (OPA). Phase sen-
sitive amplification can also be used. The squeezing pa-
rameter can be used to tune the accuracy of the compu-
tation. The final homodyne detection is also experimen-
tally straight forward with a local oscillator derived from
the pump laser used in the OPA (via a doubling cavity,
for instance).

The matrix inversion algorithm is experimentally very
similar to the eigenvalue problem. The key difference is
the use of an extra auxiliary mode, which can be prepared
independently with an additional OPA. The four-mode
operator is conceptually similar to the operator in Eq. (6)
used in the previous algorithm. Each auxiliary mode
serves as an ancilla in the phase-dependent gate, and
the algorithm otherwise follows a similar approach to the
previous one, with a final homodyne detection step for
the amplitude quadrature of each auxiliary mode, with
the local oscillators derived from the pumps of each OPA.

Finally, the vector distance algorithm requires use of a
swap test, which can be implemented via the application
of the exponential swap gate between two auxiliary states
(which can be coherent states or squeezed states) and the
oracle mode in Eq. (10) [10] and the reference mode. The
required homodyne detection of the phase quadrature of
the first test mode in a bright coherent state and is again
experimentally straight forward.

Discussion — Our previous all-photonic implementa-
tions are difficult to do experimentally but are still within
current reach of the latest technological achievements.

For instance, high rates of squeezing are now achiev-
able [57], along with the generation of cat states [58].
However, we note that our scheme is not limited to pho-
tonic demonstrations but a variety of substrates, includ-
ing spin ensemble systems, such as trapped atoms and
solid state defect centers [59–62].

We hope that the work presented here will lead to fur-
ther avenues of research. Especially since there has been
a substantial increase of results in discrete-variable ma-
chine learning [14, 63–65]. All of these would be inter-
esting to be generalized to continuous variables as fu-
ture work. Additionally, adapting our current work into
the cluster-state formulism [41] would also be interest-
ing in order to take advantage of state-of-the-art experi-
mental interest and the scalability that continuous vari-
ables can provide [36, 66]. Furthermore, we note an-
other viable option that uses a ‘best-of-both-worlds’ ap-
proach to quantum information processing, i.e., hybrid
schemes [52, 67, 68]. It would be interesting to adapt our
scheme presented here to such hybrid architectures.

We thank Patrick Rebentrost and Kevin Marshall for
helpful discussions. H.-K. L would like to acknowledge
support from the Croucher Foundation. R. C. P. per-
formed portions of this work at Oak Ridge National Lab-
oratory, operated by UT-Battelle for the US Department
of Energy under Contract No. DE-AC05-00OR22725.
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