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We explore the scaling behavior of an unsteady flow that is generated by an oscillating body of
finite size in a gas. If the gas is gradually rarefied, the Navier-Stokes equations begin to fail and a
kinetic description of the flow becomes more appropriate. The failure of the Navier-Stokes equations
can be thought to take place via two different physical mechanisms: either the continuum hypothesis
breaks down as a result of a finite size effect; or local equilibrium is violated due to the high rate of
strain. By independently tuning the relevant linear dimension and the frequency of the oscillating
body, we can experimentally observe these two different physical mechanisms. All the experimental
data, however, can be collapsed using a single dimensionless scaling parameter that combines the
relevant linear dimension and the frequency of the body. This proposed Knudsen number for an
unsteady flow is rooted in a fundamental symmetry principle, namely Galilean invariance.
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The Navier-Stokes (NS) equations of hydrodynamics can be obtained perturbatively from the kinetic theory of
gases in the limit of small Knudsen number, Kn = λ

L → 0 [1]. Here, λ is the mean free path in the gas, and L
represents a characteristic length scale of the flow. As Kn → 0, it follows from statistical mechanics that density
fluctuations in the gas vanish [2], leading to the notion of a “fluid particle.” This continuum hypothesis becomes
less accurate as Kn grows, eventually leading to the failure of the NS equations for Kn >∼ 0.1. Likewise, the NS

equations break down if the local value of the strain rate, Sij = 1
2

(

∂ui

∂xj
+

∂uj

∂xi

)

, becomes so large that the condition

τSij ≪ 1 no longer holds. Here, ui represents the velocity vector, and τ is the relaxation time that characterizes the
rate of decay of a perturbation to thermodynamic equilibrium. As τSij grows, the fluid particle becomes deformed
on shorter and shorter time scales, eventually violating the local equilibrium assumption. For a broad class of flows,
breakdown of the continuum hypothesis and violation of local equilibrium can be thought to be equivalent, because
τSij ∼ τ U

L ∼ λ
c
U
L ∼ Ma × Kn. Here, the Mach number Ma = U

c compares the speed of sound c to the characteristic
flow velocity U , and it is assumed to remain small and slowly varying. Thus, either Kn or τSij emerges as the relevant
scaling parameter for determining the crossover from hydrodynamics to kinetic theory.
To demonstrate the limitations of the above-described widely-accepted reasoning, we consider the canonical problem

of an infinite plate oscillating at a prescribed angular frequency ω0 in a gas (Stokes Second Problem) [3]. We assume
the oscillation amplitude to be small and the geometry to be such that the velocity field is ux(x, y, 0) = U0cosω0t,
uy = 0, and uz = 0. Since the plate is infinite (l → ∞), the “standard” size-based Knudsen number Knl =

λ
l remains

zero at all limits and cannot be relevant. The scaling parameter here is the Weissenberg number, Wi = ω0τ [4, 5],

and one can recover the correct Knudsen number, Knδ = λ
δ , using the boundary layer thickness, δ =

√

2νg
ω0

. (Indeed,

Knδ ∼
√
Wi, given the kinematic viscosity is νg ∼ λ2

τ .) Regardless, τSij ≈ τ U0

δ ∼ Ma ×Knδ. Thus, as above, the
validity of the NS equations (and the scaling properties of the flow) is determined either by the flow length scale
(Knδ) or by the flow time scale (τSij or Wi), and both parameters lead to the same conclusion. While this analysis
for an infinite plate is reasonable, it does not work for a finite plate (or a finite-sized body). For a finite-sized body,
Knl may be non-zero at some limit and appear in the problem alongside Wi. This is because the oscillation frequency
ω0 is in general independent of the linear dimensions of the body and an externally-prescribed parameter. Recent
literature on scaling of such flows reflects this complexity: some reports suggest Knl scaling [6–8] and others Wi scaling
[4, 9, 10]. The purpose of the present work is to study this non-trivial limit and to recover, both experimentally and
theoretically, the universal scaling hidden in the apparent contradictions.
Our experimental measurements are based on quartz crystals, and micro- and nano-mechanical resonators. When

driven to oscillations in a gas, these structures generate oscillatory flows and dissipate energy. The gases used are
high-purity He, N2, and Ar. The approximate equation of motion of a mechanical resonator (in any resonant mode)
is that of a damped harmonic oscillator: ξ̈ + ω0

Qt
ξ̇ + ω0

2ξ = F(t)/mr, where ξ(t) is the amplitude, mr is the mass,
1
Qt

is the total (dimensionless) dissipation, and ω0 = 2πf0 is the angular frequency of the mode driven by the

sinusoidal force F(t). In a typical experiment, the pressure p of the gas is changed, and 1
Qt

and ω0 are measured.

For all practical purposes, ω0 stays constant through p sweeps. To obtain the (dimensionless) gas dissipation 1
Qg

, we

calculate 1
Qg

= 1
Qt

− 1
Q0

, where 1
Q0

is the intrinsic dissipation (obtained at the lowest p). Relevant parameters of our

resonators and other details can be found in the Supplemental Material [11].
All our 1

Qg
vs. p data possess similar features (Figs. 1a, 2a, 3a, 3b S2-S10). At low p, 1

Qg
∝ p. This is the kinetic

limit [12, 13], where the mean free path λ and the relaxation time τ of the gas are both large. At high p, the NS
equations are to be used [3]. The crossover between these two asymptotes (transitional flow regime) manifests itself
as a slope change in the data. The pressure pc, around which this transition occurs, is therefore a fundamentally
important parameter and provides insight into how this flow scales. (pc, τc and λc henceforth indicate transition
values.)
We first analyze the dissipation of a macroscopic quartz crystal resonator in shear-mode oscillations in N2 (Fig.

1a). The resonance frequency is f0 = ω0

2π ≈ 5 MHz, and the relevant linear dimension is roughly the diameter of

the metal electrode on the quartz, lx ∼ 5 mm (Fig. 1a inset). For the shown pressures, Knl =
λ
lx

is in the range

10−5 <∼ Knl <∼ 10−1, found using λ ≈ kBT√
2πdg

2p
, where kBT is the thermal energy and dg is the diameter of a N2

molecule. Because Knl remains small, we treat the quartz as an infinite plate and Wi = ω0τ is left as the only
relevant scaling parameter. The transition from molecular flow (ω0τ ≫ 1) to viscous flow (ω0τ ≪ 1) must take place
at W̃i = ω0τc ≈ 1. Hence, we call this the “high-frequency limit.” Next, we perform the same 1

Qg
vs. p measurement

on similarly large quartz resonators but with different f0. We determine pc consistently for all by finding the pressure
at which 1

Qg
deviates from the low-p asymptote by 25%. The inset of Fig. 1b shows the measured pc values in N2 as

a function of f0. The data scale as pc = constant× f0. This is consistent with the flow being scaled by Wi = ω0τ and
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FIG. 1. (a) Dissipation in N2 as a function of pressure for a quartz crystal (inset) oscillating in shear mode at f0 ≈ 5 MHz.
Solid line is a fit to Eq. (1). Transition from the kinetic to viscous regime occurs at pc ≈ 18 Torr. (b) The inset shows pc vs.

f0 for different quartz crystals in N2 (Knl ≈ 0). The linear fit gives the empirical τ as a function of p. The main figure shows
τ/Cg for He, N2, and Ar as a function of p. Normalization by Cg accounts for the differences between gases [11]. Dashed line
is 1/p. Error bars are not shown when smaller than symbols.

ω0τc ≈ 1 determining the transition: τ =
CN2

p for a near-ideal gas with CN2
being a constant; ω0τc ≈ ω0

CN2

pc
≈ 1, and

pc ≈ 2πCN2
× f0. The experiment provides the empirical value CN2

= 610± 30 × 10−9 in units of s·Torr. Repeating
the same experiment for He and Ar, we find CHe = 560± 70× 10−9 and CAr = 750± 80× 10−9, both in units of s·Torr.
Figure 1b (main) is a collapse plot of τ/Cg for all three gases as a function of p, showing the degree of linearity. The
measured values of Cg for all gases are a factor of ∼ 5 larger than the kinetic theory predictions [11, 14].
The data in Fig. 1a can be fit accurately [4]. For a large plate resonator (Knl ≈ 0), the dissipation in a gas of

viscosity µg and density ρg can be found as [11, 16]

1

Qg
=

Sr

mr
f(ω0τ)

√

µgρg
2ω0

. (1)

Here, Sr is the surface area and mr is the mass of the plate resonator, and f is the scaling function [16] found as

f(x) = 1
(1+x2)3/4

[

(1 + x) cos
(

tan−1 x
2

)

−(1− x) sin
(

tan−1 x
2

)]

. The fit in Fig. 1a was obtained using the empirical
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FIG. 2. (a) Dissipation vs. pressure for a microcantilever (inset) with lx × ly × lz ≈ 32× 350× 1 µm3 and f0 = 18.8 kHz in N2.
Solid line is a fit to Eq. (4); dotted (blue) line is a fit to the cylinder solution; pc ≈ 1.2 Torr. (b) pc vs. f0 in N2 for three sets
of devices with different characteristic dimensions. Diamonds are nanocantilevers from ref. [15]; circles are microcantilevers;

squares are macroscopic resonators from Fig. 1b. (c) W̃i and K̃nl in He, N2, and Ar for all devices. Dashed line is W̃i+K̃nl = 1.
The inset shows the same data using linear axes; the large data points correspond to binned average values.

relation τ = 610×10−9[s·Torr]
p and experimental parameters [11].

Now, we turn to the “low-frequency limit” of ω0τ → 0. Figure 2a shows the pressure-dependent dissipation of a
low-frequency microcantilever with linear dimensions lx × ly × lz ≈ 32× 350× 1 µm3 (inset Fig. 2a) and frequency
f0 = 18.8 kHz. We define Knl =

λ
lx
, as suggested in [7, 17, 18]. The transition in Fig. 2a takes place around pc ≈ 1.2

Torr, where Knl ≈ 1 and ω0τ ≈ 0.06. (Knl ≈ 1 indicates deviation from the low-p molecular asymptote.) The features
in Fig. 2a are very similar to those in Fig. 1a: two asymptotes with a well-defined pc. Inspection of the ranges of Wi
and Knl suggests that the transition cannot be tied to frequency (Wi) but must be due to the length scale (Knl). In
other words, the transition from molecular flow (Knl ≫ 1) to viscous flow (Knl ≪ 1) appears to take place around
K̃nl =

λc

lx
≈ 1. While the data trace in Fig. 2a looks similar to that in Fig. 1a, the transitions observed in the two

are due to different physical mechanisms.

In Fig. 2b, we plot the consistently-found pc in N2 for different sets of devices. Here, the relevant linear dimension
lx is kept constant for each set, but the frequency is varied: diamond nanocantilevers [15] with lx ≈ 800 nm and
0.4 MHz ≤ f0 ≤ 40 MHz; silicon microcantilevers with lx ≈ 32 µm and 14 kHz ≤ f0 ≤ 2.4 MHz; and quartz crystals
with lx ∼ 5 mm and 5 MHz ≤ f0 ≤ 75 MHz. Surprisingly, the linear trend between pc and f0 holds only for high
frequencies, with a saturation at low frequencies. The saturation value of pc is determined by the condition that
λ ∼ lx (dotted horizontal lines). The oscillation frequency (and Wi) becomes the relevant scaling parameter above a
certain frequency; at low frequency, the length scale (Knl) takes over. Thus, the physics is determined by an interplay
between the relevant length scale of the body and its oscillation frequency.

To gain more insight into the transition, we scrutinize K̃nl =
λc

lx
and W̃i = ω0τc for each device at its pc. Figure 2c

shows K̃nl and W̃i plotted in the xy-plane using logarithmic and linear axes (inset); the dashed lines are W̃i+K̃nl = 1.
The data suggest that the dissipation is a function of both Wi and Knl, and it approximately depends on Wi + Knl.

We now justify the observed scaling more rigorously by inspecting the stress tensor σij obtained from the Chapman-
Enskog expansion of the Boltzmann equation in the relaxation time approximation. To second order of smallness, the
expansion is [19]

σij ≈ σ
(1)
ij + σ

(2)
ij = 2ρgθ

[

τSij − τ (∂t + u · ∇) (τSij) + 2τ2
(

SikSkj −
δij
3
SklSkl

)

− 2τ2 (SikΩkj + SjkΩki)
]

. (2)

As usual, Sij =
1
2

(

∂ui

∂xj
+

∂uj

∂xi

)

and Ωij =
1
2

(

∂ui

∂xj
− ∂uj

∂xi

)

are the strain rate and the vorticity tensors, respectively, with

i, j = x, y, z; and θ = kBT
mg

. The last two terms of σij are the second rank tensor ξ
(2)
ij of order (τS)2, where S represents

the strain rate tensor. There are two dimensionless groups in Eq. (2): the total time derivative τ d
dt = τ

(

∂
∂t + u · ∇

)

and τS. One notices that these two dimensionless groups both remain invariant under Galilean transformations [11].
In order to satisfy Galilean invariance, therefore, the Chapman-Enskog expansion of kinetic equations must be in
powers of these parameters only; powers of non-Galilean-invariant parameters, e.g., “bare” ∂

∂t , are forbidden in a flow
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FIG. 3. (a) Dissipation vs. p for two cantilevers with different length scales but similar frequencies (lx = 800 nm, f0 ≈ 894
kHz; and lx = 32 µm, f0 ≈ 924 kHz) in N2. Transitions are determined by Knl ≈ 1 at pc ≈ 56 Torr and 3.6 Torr, respectively.
(b) Dissipation for a nanocantilever (lx ≈ 800 nm, f0 ≈ 28.6 MHz) and a macroscopic quartz crystal (lx ∼ 5 mm, f0 ≈ 32.7
MHz [4]); the transitions take place around 190 Torr and 150 Torr, respectively. (c) Collapse plot for all the data in different
gases. The thick solid line shows the scaling function f . The inset is a collapse of select cantilever data based on the viscous
cylinder solution. Squares and diamonds correspond to microcantilevers (lx ≈ 32 µm) and nanocantilevers (lx ≈ 800 nm),
respectively. Dashed line shows the imaginary part of the complex hydrodynamic function for a cylinder. The lower inset
shows the parameters of the model.

in an arbitrary geometry. Accordingly, one can formally write the Galilean-invariant stress tensor up to all orders as

σij = 2ρgθ
[

τSij +

∞
∑

n=2

{

αn−1(−τ)
n−1

(

∂

∂t
+ u · ∇

)n−1

(τSij) + ξ
(n)
ij

}

]

. (3)

Here, αn−1 are constants, and the tensors ξ
(n)
ij ∼ (τS)n are not necessarily zero [20].

A closed form formula can be obtained for the dissipation of a finite-sized body oscillating in a fluid, if the deviations
from the infinite plate solution [16] are assumed small. As in the infinite plate [11, 16], we set all αk ≈ 1 and all

ξ
(n)
ij ≈ 0 in Eq. (3). After non-dimensionalization with û = u

c , t̂ = ω0t and ∇̂ = l∇, the stress tensor σij for a

finite-sized body becomes an expansion in powers of the operator τ d
dt = ω0τ

∂
∂t̂

+Knlû · ∇̂. The scaling parameter
therefore becomes approximately ω0τ +Knl, and the infinite plate solution in Eq. (1) can be generalized by replacing
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ω0τ with ω0τ +Knl. Thus, we deduce [11]

1

Qg
≈ Sr

mr
f(ω0τ +

λ

lx
)

√

µgρgτ

2(ω0τ + λ
lx
)
. (4)

for a finite-sized body oscillating in a fluid. Several points are noteworthy. First, Eq. (4) is valid in the asymptotic
and the intermediate ranges. Second, the non-dimensionalization above is eminently reasonable, because the only
velocity scale in kinetic theory is the thermal velocity ∼ c. Regardless, the dimensional solution is obtained only
after imposing the boundary conditions. Finally, Galilean invariance dictates the form of d

dt and leads to a scaling
parameter ≈ Wi +Knl, instead of a more involved combination of Wi and Knl.
A number of fits to experimental data using Eq. (4) are shown in Figs. 2a, 3a, and 3b as well as in the Supplemental

Material [11]. The data in Fig. 3a and 3b are examples of the low- and high-frequency limits, respectively. Here,
different-sized but similar-frequency resonators are compared. All fits are obtained as follows. First, Sr/mr is
determined from linear dimensions or from separate measurements when necessary [11]. For each pressure, the value
of ω0τ + λ

lx
is computed using τ = Cg/p and λ ≈ 0.23 kBT

dg
2p

of the gas, and lx and ω0 of the resonator. Finally, the

dissipation is found from Eq. (4) at each pressure using tabulated µg and ρg, and our empirical τ . To improve the fits,
the theoretical prediction is multiplied by an O(1) constant Qp . The collapse plot in Fig. 3c is obtained by properly

dividing the data by Sr

mr

√

µgρgτ

2(ω0τ+
λ
lx

)
Qp and plotting the results as a function of ω0τ + λ

lx
. The thick solid line shows

f(Wi + Knl). There are no free parameters other than the fitting factors Qp with mean Q̄p ≈ 2.6± 0.5 [11].
At the viscous limit Wi + Knl ≪ 1, the cantilever data deviate from the plate solution and converge to a cylinder

solution. The cylinder solution yields 1
Qg

≈ ΓI(Reω)
1/T0+ΓR(Reω) [21, 22]. Here, Γ(Reω) = ΓR(Reω)+iΓI(Reω) is the complex

hydrodynamic function for a cylinder and only depends upon the (oscillatory) Reynolds number Reω = ω0lx
2

4νg
; T0 =

π
4
ρglx
ρrlz

with ρr being the density of the solid (Fig. 3c lower inset). For our gas experiments, 1/T0
>∼ 1000 ≫ ΓR, and

thus 1
QgT0

≈ ΓI(Reω). The upper inset of Fig. 3c shows
1

QgT0

from representative cantilevers with different parameters

plotted against Reω; dashed line shows ΓI(Reω). In each case, a fitting constant Qc with mean Q̄c ≈ 0.9± 0.2 is used
[11]. The data converge to the cylinder solution in the viscous regime.
We conclude that the scaling parameter for an arbitrary time-dependent isothermal flow should be a function of

both Wi and Knl. We show that a generalized Knudsen number in the form Wi + Knl works well and can be justified
by Galilean invariance.
We acknowledge partial support from US NSF (through Grant No. CBET-1604075).
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