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The B-decay half-lives of 94 neutron-rich nuclei 44151 Cg, 146-154p, 148-1567,  150-158 ¢
153-160p,  156-162q ~ 159-163py, ~ 160-166Gy, ~ 161-168p,, ~ 165-170(3q  166-172rpp, © 169173y
172=175Ho and two isomeric states 7™ Er, 1™>™Dy were measured at Radioactive Isotope Beam
Factory (RIBF), providing a new experimental basis to test theoretical models. Striking, large
drops of B-decay half-lives are observed at neutron-number N = 97 for 55Ce, 59Pr, 60Nd, 62Sm, and
N = 105 for g3Eu, ¢4Gd, 65Tbh, 66Dy. Features in the data mirror the interplay between pairing
effects and microscopic structure. r-Process network calculations performed for a range of mass



models and astrophysical conditions show that the 57 half-lives measured for the first time play an
important role in shaping the abundance pattern of rare-earth elements in the solar system.

The rapid neutron-capture (r-) process, a series of neu-
tron captures competing with 8 decays occurring in ex-
treme neutron-rich stellar environments, is responsible
for the origin of about half of the elements heavier than
iron in the universe [1]. The fact that the astrophysical
sites of the r process and its exact mechanism have not
been identified yet, makes the r process one of the most
exciting subjects in astrophysics [2].

The two most prominent features of the r-process
abundance in the solar system are the large abundance
of 59Te, 54Xe (mass number A~130) and 7sPt, 79Au
(A~195), which are understood in terms of the enhanced
stability of nuclei with filled major neutron shells (of neu-
tron number N=82 and N=126). However, the produc-
tion mechanism of the smaller and broader peak of Rare-
Earth Elements (REE) (A~165) is instead still a contro-
versial topic [3-5]. In environments with extremely high
neutron-to-seed ratios, such as in merging neutron stars,
the r process may synthesize very heavy nuclei (4>278),
which then decay by nuclear fission. The REE peak could
receive a major contribution from such a process and its
structure could reflect closely the mass distribution of fis-
sion fragments [6, 7]. Alternatively, the REE peak could
be formed in any astrophysical sites where a long du-
ration (n,~y)=(v,n) equilibrium persisted, during the r-
process freeze-out when the temperature or neutron den-
sity are too low to sustain the explosive nuclear burn-
ing. The signature of this dynamical formation mecha-
nism would be encoded in masses (as well as 5-decay and
neutron-capture rates) [4]. The currently unknown nu-
clear structure of exotic nuclei could be embodied in the
REE peak. In this region of the nuclear chart, K-mixing,
vibration degeneracy, shape coexistence, quadrupole de-
formation, and the strength of the first-forbidden 5 de-
cays are highly uncertain. Shell gaps arising from mid-
shell deformation are of special interest for the r process,
and recently, evidence for a deformed shell gap was re-
ported in 4Gd and g2Sm at N=100 [8, 9].

Therefore, the REE peak, may contain a unique sig-
nature of the unknown astrophysical sites, possibly of
the late r-process conditions to which the main r-process
peak may be insensitive [10]. However, to interpret such
a signature, the various nuclear processes such as fission,
neutron capture, and S-decay of exotic nuclei have to be
experimentally known or reliably modeled. This letter re-
ports on the first measurements of a large set of -decay
half-lives and their systematic trends, whose theoretical
predictions are difficult because the half-lives depend on
a multitude of nuclear properties, for example deforma-
tion, level structure and spin, as well as Qg.
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FIG. 1. (color online). (a) Particle identification plot. The
nuclides with newly measured ([-decay half-lives are located
to the right of red line, and the nuclei tagged by red circles
are the most exotic isotopes measured for each element. (b)
The A/Q distribution for the case of s0INd isotopes.

Two [-decay spectroscopy experiments optimized for
transmission of 18Nd and "Dy were performed at RIBF
by using in-flight fission of a 345 MeV /A 238U primary
beam with an average intensity of 7 pnA and 12 pnA,
respectively. After selection and identification in the
large-acceptance BigRIPS separator, exotic nuclei of in-
terest were transported through the ZeroDegree Spec-
trometer (ZDS) and implanted in the beta-counting sys-
tem WAS3ABI at a rate of about 100 ions/s [11]. High
purity germanium cluster detectors of the EURICA (Eu-
roball RIken Cluster Array) surrounded WAS3ABI to de-
tect any « rays emitted from the implanted nuclei [12—-
19]. The particle identification (PID) achieved with the
TOF-Bp-AE method is shown in a two-dimensional plot
of atomic number (Z) versus mass-to-charge ratio (4/Q)
[20] (see Fig. 1). The largest source of contamination in
our PID was caused by electron pickup of fully stripped
ions, a process that alter the A/Q ratios of the ions. How-
ever, as shown in Fig. 1, the BigRIPS resolution was high
enough to allow identification of a large fraction of these
cases. A/Q gates in the offline analysis allowed control of
the purity of the ions, so that it could be accounted for in
the half-life analysis. The S-decay half-life of an isotope
of interest was extracted from the fit of the time distribu-
tion of electrons detected after the implantation of an ion,



and correlated to them in position and time [21-25], em-
ploying the least-squared and unbinned maximum likeli-
hood methods in a parallel analysis that included contri-
butions from a parent decay, daughters, granddaughters,
as well as a constant background. In some cases, 8-decay
curves gated on [-delayed ~ rays were used to confirm
the previous results. The half-lives of daughter nuclei
used in the fit were either measured in our experiment or
taken from literature [26]. The S-delayed neutron emis-
sion probabilities (P,) were taken from literature [26] if
available. Whereas they were varied in the fit within a
range up to +£20%, and the mean value was determined
from the average of theoretical predictions of Finite-
Range Droplet-Model (FRDM) mass formula with Quasi-
particle-Random-Phase Approximation (QRPA) [28] and
Koura-Tachibana-Uno-Yamada (KTUY) with the second
generation of S-decay Gross Theory (GT2) [29, 30]. The
final uncertainty of measured half-lives included the con-
tribution from half-lives of daughter, g-delayed daugh-
ters, as well as contaminations. In general, the largest
contribution to such uncertainty is either statistics due
to low count rates or the unknown P, values. An exam-
ple of B-decay curve is fitted for *"Pr (see Fig. 2).
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FIG. 2. (color online). Time distribution of *"Pr $-decay
events fitted by the activities of several components: parent
nuclei (solid-green line), daughter nuclei (solid-black line),
granddaughter nuclei (dashed-black line), as well as a con-
stant background (solid-blue line). The other components, in-
cluding B-delayed daughter nuclei and S-delayed granddaugh-
ter nuclei, are not shown in this figure.

The measured half-lives are reported in Table I (see
Supplemental Material). Fig. 3 shows the systematic
trends of S-decay half-lives as functions of neutron num-
ber N. Experimental results are compared with previ-
ous measurements, and the predictions of three theoret-
ical models: FRDM+QRPA [28], KTUY+GT?2 [29, 30],
and the Relativistic Hartree-Bogoliubov (RHB) with the
proton-neutron Relativistic Quasiparticle Random Phase
Approximation (pn-RQRPA) [31]. Our measurements
are in very good agreement with the literature values,

while discrepancies with theoretical predictions in some
cases reach one order of magnitude. These differences,
however, are within model uncertainty, as one can in-
fer that they are of similar magnitude for less exotic
cases. Our data shows, therefore, no evidence for drastic
changes of nuclear structure capable of modifying gross
properties such as half-lives. To some extent, given the
sensitivity of f-decay half-life to Qs (T} /rongf’), we also
conclude that there are no dramatic differences appear-
ing between calculated and experimental nuclear masses
in the region of nuclei measured here. The KTUY+GT2
and FRDM+QRPA models both reproduce the system-
atic trends of odd-even staggering present in the exper-
imental results, while the RHB+pn-RQRPA model does
not. Among the three models, the KTUY+GT2 pro-
vides the most consistent predictions across all the ele-
ments considered. In contrast, FRDM+QRPA underes-
timates systematically the half-lives of 59Pr, ¢1Pm, and
g7Ho isotopes, and RHB+pn-RQRPA shows systematic
differences with respect to experiment, which depend on
atomic number Z. In particular, the underestimate of
half-lives seen for 55Cs isotopes slowly evolves with Z to a
substantial overestimate for g5 Tb, g7Ho isotopes. Finally,
we observe that KTUY+GT2 does not seems to be able
to predict effects due to the fine nuclear structure and
the complex nature of the 8 decay. This is likely a con-
sequence of the phenomenological approach of the GT2
model. For these effects, we find that FRDM+QRPA
model allows a more detailed interpretation of the mea-
sured data, as described in the following.

A very interesting feature of the half-lives systematics
seen in Fig. 3 is the sudden drops at N=97 for the ele-
ments 5806, 59PI‘7 GONd; GQSm, and at N=105 for 63Eu,
64Gd, 65Tb, 6Dy, but with only small drops from N=98
to N=99 and from N=106 to N=107. It is well known
that the nucleon-nucleon pairing interaction causes large
fluctuations in @)g along even-A B-decay chains but has
no net effect in odd-A decay chains. For the goNd iso-
tope chain, the effect leads to the ()g increases by about
2 MeV from !%%Ndgg to ®"Ndg7 then drops by about 1
MeV in '"®Ndgg, with corresponding large fluctuations
in the half-lives (see Fig. 3). The calculated S-decay
strength function of ®"Ndg7 shows a stronger low-lying
strength than %6Ndgg, which makes the decrease of half-
life of 15"Ndg7 relative to 1®Ndgg larger than that could
be expected from Qg systematics alone (see Fig. 4(a,b)).
Alternatively, from '*®Ndgs and '®*Ndgg the calculated
and measured drops are much smaller than the expec-
tation which is simply predicted from @) changes. The
reason is that the strength in the *?Ndgg decay is shifted
upward by about 2 MeV relative to %8 Ndgg with the
almost identical distributions below ()g, canceling the
effect of about 2 MeV increase in Qg (see Fig. 4(c,d)).
Since the ground-state (gs) deformation changes very lit-
tle along this sequence of isotopes, we can understand
these strength-function changes from level spins and GT
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FIG. 3. (color online). Systematic trends of S-decay half-lives from this work (solid circles) and previous measurements (open
triangles) [26] with neutron number for thirteen elements. The measurements are compared to predictions of three theoretical
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selection rules. The level schemes here are calculated
in the Folded-Yukawa model with ground-state deforma-
tions [32]. Each level is doubly degenerate. The 31st pro-
ton, 49th and 50th levels have the spins of 5/27, 5/2~

and 1/27, respectively. For "Ndg7; and *®Ndgg, the
neutron in level 49 can decay to the (gs) proton level 31
(5/27 — 5/27) in the daughter. But the single neutron
in level 50 (1/27) cannot decay to the gs proton level
31 (5/27) for '%9Ndgg, because the spin difference is 2.
Therefore a (paired) neutron in level 49 decays instead,
which leaves 3 unpaired particles in the daughter: one in
proton level 31, one in each of neutron levels 49 and 50.
Two more unpaired particles than in the gs of 1**Pmgg
leaves it in an about two-MeV excited state. The situa-
tion in nuclei near N=105 is similar. Although different
spins are involved, the selection rules lead to analogous
effects. These effects, which are clear in the data and pre-
dicted by the QRPA calculations are not always as easy
to disentangle as in the above examples, because addi-
tional factors come into play, for example deformation
changes, occupation numbers due to pairing, and wave
functions consisting of several asymptotic components.

Concerning the interesting case of N=100 where evi-
dence for a deformed subshell gap was discussed [8, 9],
we could not find a convincing signature in the half-life
trend. The half-life of {$*Pmjgo is longer than that of
$89Pmgg, which is somewhat intriguing (see Fig. 3), but

similar features were not found in other elements.

To evaluate the impact of the newly measured half-
lives on the r-process modeling, fully dynamic r-process
network calculations [33] were performed. As the role of
half-lives in the dynamical REE peak formation was in-
tended to study, where the higher impact from our data
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perimeter. The sensitivity factor is defined therein as: F'(Z, N)=100 > |Y;(Z, N, A)+Y(Z, N, A)- 2Yorigin(A)| based on [37].
A=T50

Where the Y3(Z, N, A) and Y (Z, N, A) are the calculated abundances at mass number A with ten times and one tenth of the
B-decay half-lives of one specific nuclide (Z, N), respectively. Yorigin(A) is the calculated baseline abundance.

was expected, we choose conditions that are typical of hot
r-process not leading to fission recycling. We assumed an
initial electron fraction Y,=0.3 and the entropy S=220
kb/baryon. The time evolution of the temperature after
explosion followed an exponential decay with the time
constant 7=80 ms. The matter density followed the same
exponential decay but convoluted with a hyperbolic func-
tion gradually approaching free expansion [33]. The fine
tuning of these conditions was determined by the best
reproduction of the REE peak, and does not affect our
conclusions as explained in the following. The mass mod-
els used in our study were FRDM, KTUYO05 [34], HFB-
14 (Hartree-Fock-Bogolyubov-14) [35], and all reaction
rates for our baseline calculations were taken from the
JINA ReaclibV1.0 Database [36]. For each mass model
we study the effect of our new data to calculations that
use half-lives predictions from the three models discussed
above (see Fig. 3). The impact of half-lives for each mass
model is comparable, therefore in the following we show
the result only using KTUYO05.

To illustrate the dynamics of the formation of the REE
peak in our model, we compare in Fig. 5a the time
evolution of abundances summed over isobaric chains
in the three mass regions A=154—-160, A=161—-167
and A=168—174. These regions contain the progeni-
tors of the rising, central and falling wing of the REE
peak. As shown in Fig. ba, the three summed abun-
dances rise sharply when free neutrons are numerous
(R=Y,/Yiotar>1), and change slowly later during freeze-
out. A large decrease of the abundance in the mass re-
gion A=154—160 occurs around ¢=0.8 s that corresponds
to a similar increase of mass region A=161—167, and a
smaller increase of mass region A=168—174, which re-

sults in a peak around A=165. The nuclei populated at
t~0.8 s are important and shown as empty squares with a
size proportional to their abundance. Part of these nuclei
are included our measurements (see Fig. 5¢). The sensi-
tivity study indicates that the half-lives of the nuclei far
away from stability line with even neutron number are
important in the beginning of the (n,~y)=(v,n) equilib-
rium, as they determine the initial abundance of progen-
itors. However, the nuclei in the measured region, which
is closer to the stability line, provide a closer impact be-
tween odd and even neutron numbers (see Fig. 5¢). This
is important to shape the final abundance of REE peak
through the competition between /3 decays and neutron
captures.

A more quantitative estimate of the impact of newly
measured (-decay half-lives on the shape of the REE
peak is illustrated in Fig. 6, where the calculated r-
process abundances using the new measurements are
compared to calculations using theoretical half-lives from
different models, respectively. The figure also shows the
theoretical uncertainty estimated for each model, deter-
mined by varying theoretical half-lives within a factor
of two, which is an estimate of the uncertainty associ-
ated with theoretical models based on the comparison
with experimental data for less exotic nuclei. From the
figure it is clear that the new half-lives have a direct im-
pact on the detailed shape of the REE peak. Changing
the astrophysical conditions within reasonable ranges re-
sults in a different shape of the REE peak, but does not
change the impact of half-lives on the calculated abun-
dance. Above all, the new measurements remove a sig-
nificant uncertainty in the calculations associated with
theoretical half-lives. Alternatively, the sensitivities of
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rare-earth elemental abundance to our data as well as
to the three theoretical models are much smaller, which
could help to study the well-known characteristic referred
to as r-process universality [38].

In summary, our experiment extends the limit of the
known half-lives reaching for the first time into the re-
gion where the REE peak is expected to form based on
some of the most promising r-process models [4, 41].
Our data have a direct impact in r-process abundance
calculations affecting almost all mass numbers between
A=150—170. This is an important step in the long-term
goal of removing nuclear-physics uncertainties so that
the REE peak can be used as a unique probe of the r-
process freeze-out conditions and eventually reveal the
currently unknown r-process site. Our data also allow
the quantification of systematic problems of theoretical
global models, and highlight the role of fine details of the
[-decay strength functions in this exotic region of the nu-
clear chart. The comparison to theoretical models, how-
ever, does not show evidence of drastic changes of nuclear
structure in the region of these measurements. This pro-
vides increased confidence in current mass models and

therefore in the reliability of r-process calculations.
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