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We show that quantum diffusion near a quantum critical point can provide an efficient mechanism
of quantum annealing. It is based on the diffusion-mediated recombination of excitations in open
systems far from thermal equilibrium. We find that, for an Ising spin chain coupled to a bosonic
bath and driven by a monotonically decreasing transverse field, excitation diffusion sharply slows
down below the quantum critical region. This leads to spatial correlations and effective freezing of
the excitation density. Still, obtaining an approximate solution of an optimization problem via the
diffusion-mediated quantum annealing can be faster than via closed-system quantum annealing or
Glauber dynamics.

Quantum annealing (QA) has been proposed as a can-
didate for a speedup of solving hard optimization prob-
lems [1–3]. Optimization can be thought of as motion
toward the potential minimum in the energy landscape
associated with the computational problem. Convention-
ally, QA is related to quantum tunneling in the landscape
that is slowly varied in time [4]. It provides an alternative
to simulated annealing, which relies on classical diffusion
via thermally activated interwell transitions. It was sug-
gested that the coupling to the environment would not
be necessarily detrimental to QA [5–7] .

Recently the role of quantum tunneling as a compu-
tational resource has become a matter of active debate
[8, 9, 11–13], as it is not necessarily advantageous com-
pared to classical computational techniques, e.g., the
path integral Monte Carlo [14–16]. In addition, dissi-
pation and noise can make tunneling incoherent, signifi-
cantly slowing down [17] the transition rates that underlie
QA.

In this paper we show that dissipation-mediated quan-
tum diffusion can provide an efficient additional resource
for QA. We model QA as the evolution of a far from
thermal equilibrium multi-spin system, which is coupled
to a thermal reservoir and is driven by a time-dependent
field. The diffusion involves environment-induced transi-
tions between entangled states. These states are delocal-
ized coherent superpositions of multi-spin configurations
separated by a large number of spin flips (a large Ham-
ming distance). At a late stage of QA the diffusion coef-
ficient decreases. Ultimately diffusion becomes hopping
between localized states and QA is dramatically slowed
down. An important question is whether the solution ob-
tained by then is closer to the optimum than the solution
obtained over the same time classically.

Diffusion plays a special role where the system is driven
through the quantum critical region, as often considered

in QA [2, 4, 8]. A well-known result of going through such
a region is the generation of excitations via the Kibble-
Zurek mechanism [18, 19]. This leads to an error, in
terms of QA, as the system is ultimately frozen in the
excited state. The generation rate can be even higher in
the presence of coupling to the environment [20, 21].

It is diffusion that makes it possible for the excitations
to “meet” each other and to recombine, thus reducing
their number. Near the critical region diffusion is en-
hanced because of the large correlation length. It has
universal features related to the simple form of the exci-
tation energy spectrum.

The effect of quantum-diffusion induced acceleration of
QA is of utmost importance for systems with delocalized
multi-spin excitations, in particular, above or close to
the threshold of many-body localization transition. To
reveal and characterize this new effect, we study it here
for a model with no disorder. This model is of interest on
its own as an example of a far from equilibrium system
coupled to the environment. The specific model is a one-
dimensional Ising spin chain driven through the quantum
phase transition by varying a transverse magnetic field
at a constant speed. Among recent applications of this
classic model we would mention cold atom systems [23–
25] and the circuit QED [26].

We assume that each spin is weakly coupled to its own
bosonic bath. The QA Hamiltonian is

HQA = −J
N−1∑
n=1

(σznσ
z
n+1 + gσxn)−

N∑
n=1

σxnXn +HB , (1)

where N is the number of spins, Jg(t) is the transverse
field, σxn, σzn are Pauli matrices, HB =

∑
n,γ ~ωγnb†γnbγn

is the baths Hamiltonian; Xn =
∑
γ λγn(b†γn + bγn),

and b†γn, bγn are boson creation/annihilation operators
in the nth bath. We assume Ohmic dissipation,
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2
∑
γ(λγn/~)2δ(ω − ωγn)=αω, α� 1, and linear in time

schedule for reducing the transverse field, ġ(t)=−v<0,
starting from the initial value gi � 1. We further assume
translational symmetry, so that λγn, ωγn are independent
of n. The spin-boson coupling (1) provides a microscopic
model for the classical spin-flip process in the Glauber
dynamics [27].

In the absence of coupling to the environment, model
(1) describes a quantum phase transition between a para-
magnetic phase (g > 1) and a ferromagnetic phase
(g < 1) [28]. The spin part of the Hamiltonian (1) can
be mapped onto fermions [29] using the Jordan-Wigner
transformation, σxn = 1 − 2a†nan, σzn = −K(n)(a†n + an)
where K(j) =

∏
i<j σ

x
i ; a†n and an are fermion creation

and annihilation operators. Changing in the standard
way to new creation and annihilation operators η†k, ηk,
with ηk = 1√

N

∑N
n=1[an cos(θk/2) − ia†n sin(θk/2)]e−ikn,

we obtain the Hamiltonian of the isolated spin chain
as H0 = 2J

∑
k εkη

†
kηk, where εk is the dimensionless

fermion energy,

εk =

√
(g − cos k)2 + sin2 k, tan θk =

sin k

g − cos k
. (2)

The dependence of the minimal energy ∆ = 2Jε0 on g
and the form of εk are illustrated in Fig. 1.

In the course of QA, pairs of fermions with opposite
momenta are born from vacuum due to the Landau-Zener
transitions as the system passes through the critical point
g = 1 [18, 19]. The resulting density of excitations nKZ

for large N is simply related to the QA speed [31],

nKZ = |~ġ/8πJ |1/2. (3)

In terms of the fermion operators, the Hamiltonian of
the coupling to bosons, Eq. (1), reads

Hi =
∑
kk′

hkk′Xk−k′ ,

hkk′ = ckk′η
†
kηk′ + skk′η

†
kη
†
−k′ + s∗k′kη−kηk′ , (4)

where Xq =
∑
γ λγ(bγq+b†γ−q) are boson field operators,

bγq = N−1/2
∑
n bγn exp(−iqn); the coefficients ckk′ and

skk′ are expressed in terms of the rotation angles θk, θq,
see Eq. (24) of the Supplemental Material (SM) [32].

From Eq. (4) one can identify three types of relaxation
processes, see Fig. 1(b,c). The first is scattering by a
boson in which a fermion changes its momentum k and
energy εk. The rate of a single-fermion transition k → k′

isW+−
kk′ ∝ |ckk′ |2. The other processes are generation and

recombination of pairs of fermions due to boson scatter-
ing. The parity of the total number of fermions is not
changed. The generation and recombination rates W++

kk′

and W−−kk′ are ∝ |skk′ |2,

Wµν
kk′ =

2πα

N
Ωµνkk′ [1− µν cos(µθk − νθk′)] [n̄(Ωµνkk′) + 1],

Ωµνkk′ = 2J(µεk + νεk′)/~, (5)
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Figure 1. (a) The dependence of the gap ∆ in the energy
spectrum of the Ising chain (2) on the scaled transverse field
g, which linearly decreases in time. (b) The fermion disper-
sion law and the processes of fermion scattering induced by
the coupling to the Bosonic field. Both the generation and the
recombination are two-fermion processes. (c) The diagrams
that show single-fermion intraband scattering, recombination,
and generation of fermions; the change of the fermion energy
and momentum comes from the bosons. (d) The dependence
of the density of quasiparticles on time (g = 1 − ġt). The
boundary of the filled region shows the thermal equilibrium
density, whereas the solid line shows the nonequilibrium den-
sity calculated using the Boltzmann equation (6) and disre-
garding spatial correlations.

where µ, ν=± and n̄(ω) = [exp(~ω/kBT )− 1]−1.
The single-particle quantum kinetic equation that in-

corporated these processes was considered in Ref. [20, 21].
It was written for the coupled fermion populations 〈η†kηk〉
and coherences 〈ηkη−k〉. The approach [20, 21] involved
two major approximations, the spatial uniformity of the
fermion distribution and the absence of fermion correla-
tions. These approximations hold in the critical region,
where the gap in the energy spectrum ∆(g) = 2J |1−g| .
kBT . For a sufficiently low QA rate, the density of excita-
tions is dominated by thermal processes rather than the
Landau-Zener tunneling [20, 21]. The fermion population
in this region is [exp(2Jεk/kBT ) + 1]−1, see Fig. 1(d).

QA aims at minimizing the number of excitations over
a given time. As we show, for the considered open sys-
tem there exists an optimal QA speed that allows one
to achieve the excitation density far below the Landau-
Zener-limited density (3) in a closed system. This den-
sity corresponds to the bottleneck of QA imposed by the
sharp slowing down of excitation decay due to many-
fermion effects and spatial correlations. The approxi-
mation [20, 21] does not capture this effect. The full
analysis requires solving the full Bogolyubov chain of
equations for the coupled many-particle Green’s func-
tions [22]. However, the density where the slowing down
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occurs and the scaling relations between the speed ġ and
the final density of excitations, which are our primary in-
terest, can be found in a simpler way, as discussed below.

As we show, of interest is the range of g behind the
critical region, yet close to it, where 1 − g � 1. In this
range, as g decreases, spatial correlations in the fermion
system change from weak to strong. We start with the
region of comparatively high densities, where spatial cor-
relations can be disregarded and the fermion dynam-
ics is described [30] by the Boltzmann equation for the
single-fermion Wigner probability density ρW (x, k) =

(2π)−1
∫
dp〈η†k+p/2ηk−p/2〉e

−ipx,

∂tρW +
2J

~
(∂kεk)∂xρW = L̂(0)[ρW ] + L̂(1)[ρW ]. (6)

Here, operator L̂(0) describes single-fermion scattering
by bosons [30], see Fig. 1, with the transition rates W+−

kk′

given by Eq. (5), cf. Eqs. (6) and (9) in SM. The char-
acteristic reciprocal relaxation time of fermion momen-
tum due to single-fermion scattering τ−1

r is determined
by the transition rate W+−

kk′ for fermions with energies
2Jεk, 2Jεk′ ∼ kBT ,

τ−1
r (g) = 2αkBT [(1− g)/βg~2]1/2, β = 2J/kBT. (7)

This expression refers to the semiclassical range behind
the critical point where the excitation gap ∆ has become
large compared to kBT ,

e−∆(g)/kBT � 1, ∆(g) = 2J(1− g). (8)

The rate τ−1
r (g) increases with the distance 1 − g ∝

∆ from the critical point. Extrapolating it back to the
critical region ∆ ' kBT , we recover the scaling of the
critical relaxation rate (τ−1

r )c found in [20, 21]. For slow
quantum annealing rate that we consider,

J |ġ| � ~(τ−1
r )c, (τ−1

r )c ' 4Jα/~β2, (9)

the fermion distribution in the critical region remains of
the Boltzmann form.

Operator L̂(1)[ρW ] in Eq. (6) describes two-fermion
generation and recombination accompanied, respectively,
by absorption and emission of a boson, see Fig. 1. Re-
combination requires a collision of two fermions with a
boson, see Fig. 1. Respectively, the recombination term
is quadratic in ρW ,

L̂(1)
rec[ρW (x, k)] = −N

∑
q

W++
kq ρW (x, k)ρW (x, q). (10)

It becomes small for small fermion densities. In con-
trast, the generation term L̂(1)

gen[ρW (x, k)] is density-
independent for small densities and is proportional to
W−−kq ∝ exp[−∆(g)/kBT ]. It rapidly falls off as the con-
trol parameter g moves away from the critical point.

Overall, in the range (8) the generation and recom-
bination rates described by L̂(1) are small compared

to the momentum relaxation rate τ−1
r , and the distri-

bution over the fermion momentum approaches ther-
mal equilibrium with the bosonic bath temperature.
Function ρW (x, k) in (6) factors into a product of the
Boltzmann distribution over fermion energy εk and a
coordinate-dependent fermion density n(x, t), ρW =
n(x, t) exp(−βεk)/

∑
k exp(−βεk).

A new time scale is associated with the decay of density
fluctuations. In the considered approximation this decay
is described by the diffusion equation

ṅ(x, t) = D∂2
xn(x, t), D = cD

Jβ1/2

α~
g3/2

(1− g)3/2
. (11)

The diffusion coefficient (11) has a standard form D ∼
〈v2
k〉τr with vk = (2J/~)∂kεk being the fermion velocity;

D sharply increases with decreasing 1 − g. In Eq. (11)
cD ≈ 0.17 [32].

On the time long compared to the decay time of den-
sity fluctuations, the distribution n(x, t) becomes uni-
form and its evolution is determined by generation and
recombination processes. The spatially-averaged density
〈n〉 is described by a rate equation,

〈ṅ〉 = −w(〈n〉2 − n2
th). (12)

Here, nth ≡ nth(g)=N−1
∑
k exp(−βεk) is the

thermal equilibrium density, whereas w(g) =∑
k,qW

++
kq exp[−β(εk + εq)]/Nn

2
th is the recombina-

tion rate. From Eq. (5), for β � 1− g, 1/g

w(g) ' 8παJ

~βg
, nth(g) '

(
1− g
2πβg

)1/2

e−β(1−g). (13)

As g ≡ g(t) decreases, the thermal density nth expo-
nentially sharply falls down. The mean density 〈n〉 can-
not follow this decrease, so that the density of fermions
becomes higher than the thermal density. This happens
for the value g(t) = gth where the correction δ〈n〉 =
〈n(t)〉 − nth

(
g(t)

)
becomes ∼ nth

(
g(t)

)
, see Figs. 1 and

2. The quasistationary solution of the linearized Eq. (12)
reads δ〈n〉 ≈ −ṅth/2wnth. This gives an equation for gth

β−1w(g)nth(g) = |ġ| for g = gth. (14)

As g is decreased below gth and reaches the region
exp{β[gth− g(t)]} � 1, we can disregard nth in Eq. (12).
Then using the explicit form of the rate w(g), we obtain

〈n(t)〉 ≈ β−1nth(gth)
(

log [gth/g(t)]
)−1

. (15)

This expression describes quantum annealing of fermion
density in a strongly nonequilibrium regime. We observe
that 〈n(t)〉 varies with time only logarithmically here.

For still smaller g, not only the system moves fur-
ther away from thermal equilibrium in terms of 〈n〉,
but it also develops strong spatial fluctuations. This
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is due to the sharp decrease of the diffusion coefficient
D = D(g), see Eq. (11). Spatial fluctuations of the den-
sity n(x, t) impose a bottleneck on the recombination in
one-dimensional systems [38], because for fermions to re-
combine they first have to come close to each other. In
contrast to the usually studied reaction-diffusion systems,
in the present case the bottleneck arises not because of
the decrease of the density, but, in the first place, be-
cause of the falloff of the diffusion coefficient. Once the
recombination becomes limited by diffusion, the change
of the fermion density becomes slower than in Eq. (15).

To estimate the density n∗ = 〈n(t∗)〉 where the
crossover to diffusion-limited recombination occurs we set
the rates ṅ of the recombination and diffusion processes
equal to each other. For the recombination, one can use
Eq. (12), ṅ = −wn2. For the diffusion, one can use
Eq. (11) where the mean inter-particle distance 1/〈n〉 is
chosen as a spatial scale on which the density fluctuates.
This gives

n∗ = 〈n(t∗)〉 = kw(g∗))/D(g∗), g∗ = g(t∗), (16)

where k ∼ 1. An alternative way of estimating n∗ is
described in Sec. IV of the SM.

Equations (14) - (16) relate the crossover value of g =
g∗ to the value gth where thermal equilibrium is broken.
Since g∗, gth are close to the critical point g = 1, it is
convenient to switch to variable z = β(1− g), with z∗ =
β(1−g∗) expressed in terms of zth = β(1−gth) as follows:

µ(β/α)2z
1/2
th exp(−zth) = z

3/2
∗ (z∗ − zth), (17)

where µ = cD/8k
√

2π3; note that β/α � 1. Equations
(14) - (17) express the crossover density n∗ in terms of
the speed |ġ|.

Beyond the crossover point, g < g∗ (i.e., t > t∗),
the diffusion-controlled decrease with time of the already
small fermion density is further significantly slowed down
compared to Eq. (15). If we stop QA once g∗ is reached,
n∗ gives the approximate solution of the annealing prob-
lem. Unexpectedly, the dependence of n∗ and g∗ on |ġ|
is nonmonotonic, see Fig. 2. The optimal (minimal with
respect to |ġ|) value of n∗ is

nopt ≈ [8πkα2/cDβ
3]z

3/2
opt , (18)

where zopt ≡ β(1 − gopt) ≈ log[µ(β/α)2] is the value of
z∗ where n∗ is optimal. The optimal speed is

|ġ|opt ≈ (64kπ2Jα3/cDβ
5~) ln(β2/α2)1/2. (19)

Equation (9) suggests that, in the considered dissipative
system, QA can be started at the critical point. Then the
time zopt/β|ġ|opt to reach gopt is a small portion of the
total time to reach g = 0, which is |ġ|−1

opt. The density
nopt is extremely small for weak coupling, α � 1, and
low temperatures, β � 1, and it rapidly decreases with
decreasing α and kBT/J .

Figure 2. Fermion density vs. the distance to the critical point
(a) and vs. the annealing rate (b). In (a), the filled region
is bound by the thermal distribution nth(g). The black line
shows the nonequilibrium density 〈n〉 for α = 0.06, β = 25
and |ġ|=|ġ|opt=2.85 × 10−7, see Eq. (12). The blue point
marks the crossover value g∗. For g < g∗ spatial correlations
become strong and the theory is inapplicable. In (b), the
red, blue, green and black lines show the scaled density ñ∗ =
cdβ

3n∗/8kπα
2 vs. the scaled QA rate v = ~β3|ġ|/4

√
2πJα

for logµ = 8, 9, 10, 11, respectively [parameter µ ∝ (β/α)2 is
defined in (17)]. The minimal density nopt = minn∗. The
dashed sections of the lines refer to the regions where the
asymptotic theory does not apply.

The evolution of the fermion density for t > t∗ can
be roughly estimated from the scaling equation 〈ṅ〉 =
−k′D(g)〈n〉3, cf. [38], where k′ ∼ 1. Because of the
sharp decrease of D(g) with increasing 1−g, the solution
of this equation for 1 − g = O(1) weakly depends on
g(t). For the optimal speed (19) such saturation density
is 〈n〉 ∼ nopt/ ln(β/α)� nopt.

It is instructive to compare the optimal speed (19) with
the speed |ġ|KZ that would lead to the same saturation
density nopt/ ln(β/α) = nKZ due to the Kibble-Zurek
mechanism of the creation of excitations in the absence
of coupling to the environment. From Eqs. (3) and (19),

ġopt/ġKZ ∝ (β/α) ln(β/α)2 � 1. (20)

Therefore the time it takes to reach the approximate so-
lution (18) in a closed quantum system is much larger
than in our case.

It is instructive also to compare |ġ|opt with the speed of
annealing based on the classical Glauber dynamics [27].
In this dynamics, for kBT � J excitations in the Ising
spin chain are eliminated through diffusion of kinks. If
the transition rate for a kink to move to a neighboring
site is wG and the initial density of the kinks is ∼ 1, the
time tclass to reach density n� 1 is (8πwGn

2)−1 [27]. In
terms of our model, the uncertainty relation imposes a
limitation wG � J/~. Therefore the ratio of the times to
reach nopt/ ln(β/α) via classical and quantum diffusion
is very large, ∼ tclass|ġ|opt ∝ β/α� 1.

The results demonstrate that quantum diffusion near
the critical point provides an important mechanism of the
speedup of QA. The diffusion occurs over states that are
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large quantum superpositions of spin configurations sep-
arated by the Hamming distance ∼ βg[α(1 − g)]−1 � 1
of the order of the mean free path of a fermion. The bot-
tleneck of QA in an open system can be imposed by the
sharp slowing down of the diffusion behind the critical
region. The crossover to slow excitation recombination
is accompanied by the onset of significant spatial fluc-
tuations of the excitation density even in the absence of
disorder. At the crossover, the residual density of exci-
tations non-monotonically depend on the quantum an-
nealing rate |ġ|. Its minimum provides the optimal value
of the rate. This value scales with the coupling constant
and temperature as α3T 5, the optimal excitation den-
sity is ∝ α2T 3. Importantly, the optimal speed |ġ|opt is
independent of the system size.

For our simple but nontrivial example of QA, attaining
the approximate solution [40] via the quantum-diffusion
mediated process is faster than via classical diffusion or
the closed-system QA. One might expect that, in higher-
dimensional systems, quantum diffusion over extended
states could provide an efficient route to finding approx-
imate solutions in the presence of disorder above the
many-body mobility edge [41].
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