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We provide the first demonstration that molecular-level methods based on gas kinetic 

theory and molecular chaos can simulate turbulence and its decay. The Direct Simulation Monte 

Carlo (DSMC) method, a molecular-level technique for simulating gas flows that resolves 

phenomena from molecular to hydrodynamic (continuum) length scales, is applied to simulate 

the Taylor-Green vortex flow. The DSMC simulations reproduce the Kolmogorov −5/3 law and 

agree well with the turbulent kinetic energy and energy dissipation rate obtained from Direct 

Numerical Simulation (DNS) of the Navier-Stokes equations using a spectral method. This 

agreement provides strong evidence that molecular-level methods for gases can be used to 

investigate turbulent flows quantitatively.  
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Turbulence is almost exclusively studied at the hydrodynamic (continuum) level. 

Molecular-level simulations of turbulence have received little, if any, attention to date because 

the molecular and the smallest turbulent scales are considered to be many orders of magnitude 

apart, and, as a result, molecular turbulence simulations have been heretofore considered to be 

physically unnecessary and computationally intractable. However, there are cases of practical 

interest in which the Kolmogorov length and time scales, which are the smallest length and time 

scales in a turbulent flow, can be within 1-2 orders of magnitude of the mean free path and the 

mean collision time. For a high-speed gas flow with a turbulent Mach number M  and a 

turbulent Reynolds number Re , the ratio of the Kolmogorov length scale to the mean free path 

scales as 1/4Re M , and the ratio of the Kolmogorov time scale to the mean collision time scales 

as 1/2 2Re M  [1]. Thus, for 1M =  and Re 10,000= , these ratios are ~10 and ~100, respectively. 

In such cases, studying turbulence and energy exchange at the molecular level may offer new 

physical insights.  

The most common starting point for any molecular-level, kinetic-theory investigation of a 

gas flow is the Boltzmann equation (BE). Kinetic theory describes a gas in terms of a distribution 

function f  of molecular velocities and positions. The velocity distribution function f  provides 

a complete description of a dilute monatomic gas at the molecular level. The BE gives the 

evolution of the velocity distribution function f : 
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where t  is time, x  is the position in physical space, v  is the molecular velocity, F  is any 

external force (velocity-independent above and zero herein), m  is the molecular mass, and n  is 
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the number density. The right side is the collision integral. In this integral, the distribution 

functions f  and *f  are evaluated at the molecule’s pre-collision velocity v  and post-collision 

velocity *v , respectively, and the distribution functions 1f  and *
1f  are evaluated at the collision 

partner’s pre-collision velocity 1v  and post-collision velocity *
1v , respectively. Also in the 

collision term, 1rc = −v v  is the relative speed of the colliding molecules, σ  is the cross section 

of the binary collision, and Ω  is the solid angle. The details of the binary collision are included 

in the collision cross section. 

The BE is based on two fundamental assumptions. The first is that only binary collisions 

are considered. The second is that molecular chaos applies (the “Stosszahlansatz”), which leads 

to the time irreversibility of the BE. The apparent incompatibility between the irreversible 

tendency of the BE velocity distribution function toward equilibrium and the underlying 

reversibility of molecular collisions suggests a stochastic interpretation of the BE velocity 

distribution function as the most probable number of molecules at a particular point in phase-

space [2]. Aristov [3] and Tsugé [4] suggest that the introduction of fluctuations into the BE is 

critical for simulating turbulent flows. Tsugé [4] further argues that the BE could simulate 

turbulent flows if the BE velocity distribution function were replaced by a particle-based 

distribution function like the Klimontovich distribution function Kf : 
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In this approach, the ensemble average of Kf  is the distribution function f  that appears in the 

BE. Thus, a particle-based distribution function provides microscopic detail not available to the 

BE distribution function in the sense that it allows the appearance of fluctuations, which are 
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otherwise absent from the BE. Moreover, Grad [5] showed that uncorrelated initial conditions 

are the most probable initial conditions for molecule collisions. This observation suggests that 

the assumption of molecular chaos at the microscopic level does not preclude the establishment 

of fluctuations at the macroscopic level [3][6]. 

Thus, the ability of the BE to simulate turbulent flows has been suggested theoretically 

[3][4][6] but has not yet been investigated computationally. The major problem is the magnitude 

of the computational effort required to resolve all of the length scales from the molecular to the 

macroscopic. High Performance Computing (HPC) platforms have only recently become 

available on which molecular-level gas-flow simulations resolving turbulent length scales are 

possible, albeit computationally intensive.  

Bird’s Direct Simulation Monte Carlo (DSMC) method [7] is widely used as a surrogate 

for a direct solution of the BE. DSMC is a molecular-level technique for simulating gas flows 

when the mean free path is much larger than the molecular diameter, which is typically the case. 

DSMC uses a molecular-level, stochastic algorithm that approximates the continuous velocity 

distribution function of the BE with a discrete number of computational molecules or “particles”, 

just as in the Klimontovich distribution function in Eq. (2). Each of the N  particles typically 

represents a large number of real molecules, and these particles move, collide with other 

particles, and reflect from boundaries just as real molecules do. Substituting Eq. (2) into Eq. (1) 

yields 2N  differential equations [8]:  

i id dt =x v , ( ) ( ) ( )i i i id m dt = +v F x C v , (3) 

where ( )iC v  represents the binary collision process each particle undergoes during the time step 

and ( )iF x  is the external force (zero herein).  
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The physical domain is discretized into a set of cells. A time-splitting scheme based on 

Eq. (3) is used that consists of a move operation, during which particles translate ballistically 

over time step tΔ , followed by a collide operation, during which pairs of particles within the 

same cell are randomly selected for collision. Unlike the Klimontovich distribution, in which 

particles are mathematical points in space, particles are assigned finite collision cross sections 

based on the intermolecular interaction of interest. Macroscopic gas properties are determined by 

sampling the properties of the particles resident in a cell at a particular time. Standard DSMC 

executes each of these operations once per time step in the order move-collide-sample. 

Wagner [9] proved that DSMC simulations approach solutions of the BE for monatomic 

molecules in the limit of vanishing discretization and statistical errors. Gallis et al. [10] reported 

DSMC results for transport properties and velocity distribution functions that are in excellent 

agreement with Chapman-Enskog (CE) infinite-approximation results [11] for conditions that are 

near equilibrium and with Moment-Hierarchy (MH) results for conditions that are far from 

equilibrium [12].  

DSMC inherently accounts for both near-equilibrium transport (viscosity, thermal 

conductivity, mass diffusivity) and non-equilibrium phenomena (thermal and pressure diffusion) 

[6]. More importantly, DSMC inherently reproduces the thermal fluctuations that in some cases 

may trigger the instabilities leading to coherent flow structures and turbulence [13][14]. When 

each particle represents a single actual molecule, DSMC exactly reproduces the fluctuations in 

an equilibrium gas [13], which are typically extremely small. When each particle represents 

many actual molecules, the variances of the fluctuations in a DSMC simulation are the actual 

variances multiplied by the number of actual molecules represented by each particle (i.e., the 
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simulation ratio). In this situation, these fluctuations can be reduced to an acceptable level, 

relative to macroscopic velocities, through ensemble averaging [15]. 

The substantial computational effort needed to achieve acceptable signal-to-noise ratios 

for high-density, low-speed flows has generally prevented DSMC and other molecular-level 

methods from simulating macroscopic hydrodynamic (continuum) phenomena at the molecular 

level. Recently, however, DSMC simulations of the Richtmyer-Meshkov and Rayleigh-Taylor 

instabilities have been successfully performed using massively parallel computers [14][15]. To 

demonstrate the ability of DSMC to simulate turbulent flows, simulations of the Taylor-Green 

(TG) vortex flow [16] are performed. TG flow is a canonical turbulent flow in which the 

generation of small-scale eddies and the corresponding cascade of energy from small to large 

wavenumbers can be numerically observed. TG flow has been used extensively to study isotropic 

turbulence [17][18][19]. TG flow is initialized in a triply periodic domain L Lπ π− ≤ ≤x  using a 

flow field that contains only a single length scale L  and a single velocity scale 0V :  

( ) ( ) ( )0 sin / cos / cos /u V x L y L z L= ,  

( ) ( ) ( )0 cos / sin / cos /v V x L y L z L= − , (4) 

0w = ,  
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Vp p x L y L z Lρ= + + + ,  

where ( ), ,u v w=u  is the flow velocity and p  is the pressure at position ( ), ,x y z=x . Thus, all 

of the kinetic energy in the flow is initially resident in a single wavenumber.  

The evolution of TG flow is described in terms of the nondimensional time 0T V t L= . 

Early on, the flow is highly anisotropic and laminar. Nonlinear interactions between the 
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developing eddies result in energy cascade from small to large wavenumbers and the rapid 

development of a turbulent spectrum. Later on, a catastrophic collapse of the accumulated energy 

leads the flow to a state that exhibits features of isotropic, homogeneous turbulence [17]. An 

important mechanism involved in homogeneous three-dimensional turbulent flows is the 

maintenance and enhancement of vorticity by vortex-line stretching and the consequent 

production of small-scale eddies [1]. This process controls the turbulent-energy dynamics and 

hence the global structure and evolution of the flow [18]. 

The rate at which energy dissipates to larger wavenumbers is a weak function of the 

Reynolds number. Increasing the Reynolds number from 400 to 5000 increases the maximum 

dissipation rate by only 40% [18]. However, for Re 400≤ , the maximum dissipation is achieved 

at approximately the same time ( 5T = ), whereas for Re 500≥ , a second maximum in the 

dissipation appears at a later time ( 9T = ). As a result, in the range of 400 Re 500≤ ≤ , the 

dissipation rate has an extended region over which near-maximum dissipation is observed.  

The DSMC code SPARTA [20][21] was used to simulate TG flow at Re 450=  to obtain 

quantitative results for the energy dissipation rate and the spectral energy distribution. These 

simulations were performed on Sequoia, an IBM Blue Gene/Q supercomputer at Lawrence 

Livermore National Laboratory, and used more than half a million cores for 500 hours. The 

simulation domain is a triply periodic cube with sides of length 2 Lπ , where 0.0001 mL = . The 

gas is taken to have the molecular mass of nitrogen, and the initial density and temperature 

correspond to values at STP (101325 Pa, 273.15 K). The simulations used 8 billion cells (20003) 

and an average of 30 particles per cell for a total of 0.24 trillion particles. To improve the spatial 

discretization, collision partners are selected from within a sphere having a radius that equals the 

distance traveled by the particle during a time step. The characteristic (maximum) velocity 0V  
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corresponds to a Mach number of 0.3, so the simulation conditions marginally satisfy the 

incompressibility assumption (less than 8% maximum error) [22]. Molecular collisions are 

performed using the Variable Soft Sphere (VSS) collision model [6], which for nitrogen 

produces a viscosity with a 0.74
thermalT  dependence on the thermal temperature thermalT . Multiple 

collisions between the same molecules during the same time step are not allowed, which 

enforces molecular chaos in the collision process.  

The discretization errors in DSMC act to increase the transport properties [23]. For these 

simulations, the effective viscosity and hence the effective Reynolds number are determined by 

comparing a thin-slab DSMC simulation (one layer of cells in the z  direction) of the two-

dimensional TG flow to the analytical expression for the decay of its kinetic energy [19]. This 

comparison indicates that the particular discretization used for these simulations leads to an 

effective Reynolds number of Re 450= . For these conditions, the ratio of the Kolmogorov 

length scale to the mean free path is about 15, and the ratio of the Kolmogorov time scale to the 

mean collision time is about 235, which suggests that molecular effects play at most a small role, 

even for the smallest scales.  

The DNS simulations to which the DSMC simulations are compared were carried out 

using the spectral element code Nek5000 [24]. The simulation domain was a cube with sides of 

length 2π , and the initial conditions given by Eq. (4) are imposed using a characteristic velocity 

0 1V = . The fluid is modeled as incompressible with a constant of 1 Reμ =  and a constant 

density of 1ρ = . It is noted in passing that since the total temperature increase is less than 2 K 

this is a reasonable assumption. The simulation domain was discretized using 32 seventh-order 

spectral elements along each coordinate direction. Each spectral element contained 38  grid 

points placed at the Gauss-Lobatto nodes, for a total of 256 grid points along each coordinate 
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axis. Third-order-accurate temporal integration is employed with a fixed Courant number of 0.8. 

After the simulation, the velocity fields are interpolated onto a uniform grid using the seventh-

order polynomials associated with the spectral elements as interpolants. After interpolating the 

data onto this grid of equally-spaced points, discrete Fourier transforms are applied to obtain the 

energy spectra. To verify the DNS approach, the TG simulations of van Rees [25] at a Reynolds 

number of Re 1600=  are reproduced. To confirm that the results reported here are mesh-

independent, simulations are performed on 2563 and 5123 grids (i.e., 32 and 64 elements along 

each coordinate axis). The dissipation rates are found to differ by only 0.02% at 9T =  and by at 

most only 0.06% over 0 20T≤ ≤ .  

 

Figure 1. DNS (left) and DSMC (right) plots of the u  velocity at 9T = , the time of maximum 

dissipation. 
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Figure 2. DNS (left) and DSMC (right) plots of the u  velocity at 20T = . 

Figs. 1 and 2 present the u  velocity component on the bounding planes of the domain 

from the DNS and DSMC simulations at 9T = , the time of maximum dissipation, and at 20T = . 

Except for being slightly noisy, the DSMC molecular results are virtually identical to the DNS 

Navier-Stokes results at both times. A detailed presentation of the evolution of the flow field can 

be found in the works of Brachet et al. [17] and Canuto et al. [19]. At the time of maximum 

dissipation, the large-scale structures that are the remnants of the initial conditions are still 

discernible, but many smaller-scale structures are also present. This behavior is in good 

qualitative agreement with previously published results [19]. At 20T = , the original structures 

have become much weaker because the flow field has almost thermalized. 
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Figure 3. Turbulent kinetic energy decay as a function of time. 

Fig. 3 presents the turbulent kinetic energy decay as a function of time. The DSMC 

results are seen to agree closely with the DNS results over the entire time period except at late 

times after most of the kinetic energy has decayed and with the theory of Taylor and Green [16] 

at early times. The DSMC and DNS results are both normalized by their initial values, and the 

DSMC results are averaged over a window of 0.3TΔ =  to reduce statistical noise. Since the 

theory of Taylor and Green is accurate only for 3T ≤  [16], results from this theory are presented 

only up to 3T = . Kinetic energy is ultimately converted to thermal energy through molecular 

collisions (viscosity). For 3T < , the rate of conversion is slow. At 3T = , beyond which the 

theory of Taylor and Green becomes inaccurate, the rate increases. The rapid conversion of 

kinetic energy to thermal energy between 5T =  and 12T =  is captured equally well by both 

simulations. After 12T = , the rate of conversion decreases because most of the kinetic energy 

has decayed. This observation is in agreement with the assertions that the early stages of TG 
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flow are driven mainly by inertial subrange physics and that the later stages are determined 

mainly by the viscosity [17].  

 

Figure 4. Energy dissipation rate as a function of time. 

Fig. 4 presents the energy dissipation rate as a function of time. The DSMC and DNS 

results are in good agreement over the entire time period during which the energy dissipation rate 

is significant. Both methods yield the same rapid increase from 2T =  to 6T = , the same plateau 

from 6T =  to 8T = , the same maximum between 8T =  and 9T = , the same rapid decrease 

from 9T =  to 15T = , and the same slow decrease from 15T =  to 20T = . In accord with Fig. 2, 

DSMC does generally yield a slightly faster rate than DNS (the noticeably larger rate for 2T ≤  

may be caused by compressibility effects related to the finite initial Mach number, 0.3). Results 

from the viscous theory of Taylor and Green [16] and from the inviscid theory by Brachet et al. 

[17] are also shown in this figure. Both theories are valid only for early times ( 3T <  and 4T < , 

respectively). For 2T > , these two approximate theories bracket the DSMC and DNS results.  
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Figure 5. Three-dimensional kinetic-energy spectra at times near maximum dissipation. 

Fig. 5 presents three-dimensional kinetic-energy spectra at times near maximum 

dissipation. The DSMC spectra from 7.5T =  to 9T =  and the DNS spectrum at 9T =  are in 

good agreement and all exhibit the Kolmogorov 5 3−  law over about 70% of a decade. As time 

progresses, the energy in the low-wavenumber, large-wavelength region of the spectrum 

decreases. During this time, energy is transferred from the initial large wavelength to smaller 

wavelengths, a process known as the energy cascade.  

The fact that the DSMC results agree closely with the DNS results, the theory of Taylor 

and Green, and the theory of Kolmogorov suggests that DSMC can be used for quantitative 

investigations of turbulence and its decay. This observation is in agreement with the theoretically 

based suggestions of Aristov [3] and Tsugé [4] about the ability of the BE and molecular-level 

methods to simulate turbulent flows. In this sense, DSMC can be viewed as an extension of DNS 

methods in that the sub-cell dissipative processes are inherently represented without filtering out 

naturally occurring thermodynamic fluctuations. Although molecular fluctuations may well 
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affect the transition to turbulence [15], they do not affect the decay of turbulence significantly for 

the Taylor-Green vortex flow studied herein and presumably for other similar flows. Thus, 

taking advantage of ever-increasing computer power, DSMC offers the possibility of generating 

molecular-level data sets that complement existing computational and experimental data sets, 

especially for realistic flight geometries in hypersonic flows. 

Since it inherently represents molecular-level effects and thermal fluctuations, DSMC has 

the potential to improve our understanding of how these phenomena influence turbulence. In 

DSMC, hydrodynamic quantities such as compressibility, viscosity, thermal conductivity, and 

diffusivity arise directly from molecular processes, so their effects on turbulence are 

automatically captured. Since internal energy modes (rotation and vibration) and chemical 

reactions are also represented at the molecular level, DSMC offers a natural way to study their 

effects on turbulence. Moreover, the effect of surface roughness on wall-bounded turbulence can 

be investigated fundamentally because DSMC treats gas-wall interactions at the molecular level. 
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