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Angle-resolved second harmonic generation (SHG) spectra of ZnO microwires show characteristic Fano res-

onances in the spectral vicinity of exciton-polariton modes. We observe a resonant peak followed by a strong

dip in SHG originating from the constructive and destructive interference of the non-resonant SHG and the

resonant contribution of the polariton mode. It is demonstrated that the Fano line shape, and thus the Fano

asymmetry parameter q, can be tuned by the phase-shift of the two channels. We develop a model to calculate

the phase-dependent q as a function of the radial angle in the microwire and achieve a good agreement with

the experimental results. The deduced phase-to-q relation unveils the crucial information about the dynamics of

the system and offers a tool for control on the line shape of the SHG spectra in the vicinity of exciton-polariton

modes.

Fano resonances are fingerprints of quantum interference

as pointed out in the pioneering work by Ugo Fano [1]. A

Fano resonance originates from the interference between a

discrete state and a continuum of quantum states, giving rise

to a characteristic asymmetric emission line shape. First in-

troduced to describe the atomic photo-ionization [1, 2], ex-

ploration of this important phenomenon and the underlying

physics have been extended to the field of photonic crystals

[3–5], plasmonic devices [6, 7], metamaterials [8–10], fiber-

cavity system [11], Raman scattering [12], nonlinear optical

regime [14, 15], etc. [16–21]. The Fano line shape is consid-

ered as a unique asymmetric spectral response, and its tunabil-

ity in a discrete-continuum coupled quantum system provides

great opportunities for developing optronic devices such as on

chip optical sensors and switching devices [10, 16, 21]. A cru-

cial parameter that characterizes a Fano resonance is the spec-

troscopic asymmetry factor q. The spectral reflectance and

transmittance at resonance of a discrete-continuum coupled

quantum system depend strongly on this asymmetry param-

eter q. Recently, a universal approach for manipulating the

asymmetry parameter q of a Fano line shape, i.e., phase shift

tuning of the discrete state, has been introduced by Christian

Ott et al. in an atomic system [18, 19]. It is expected that in an

optical resonator with discrete optical modes, this approach of

phase shift tuning can be easily achieved by varying the shape,

size, etc. of resonators.

In microcavities with semiconductor gain media, well-

defined cavity exciton-polariton modes dominate the opti-

cal properties near the band-edge energy. As half-light-half-

matter quasiparticles, exciton polaritons are formed due to

the strong coupling of photons and excitons. These quasi-

particles have a bosonic nature and a tunable effective mass.

From the point of view of cavity quantum electrodynamics,

polariton modes in a semiconductor microcavity not only pro-

vide a playground for simulating cold atom physics, such as

Bose-Einstein condensation, super fluidity, etc. in the solid
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FIG. 1. (a) The scanning electron image (SEM) of a typical ZnO

microwire. The angles defined as θ and φ represent the two detection

planes of the angle resolved spectra. (b) The fundamental light wave

irradiates the ZnO microwire from back of the glass, the SHG radia-

tion is emitted from the top of the wire. (c) The dispersion of the 28th

and 29th TM polarized polariton modes, fitting with the white dashed

lines.

state environment at elevated temperatures [22–26], but also

can serve as discrete states for Fano resonance studies. How-

ever, despite its great importance for optoelectronics, the Fano

resonance in a cavity polariton system is yet to be demon-

strated. The main challenge is finding coherent broad con-

tinuum states that can efficiently couple with a cavity polari-

ton state. Nonlinear optical effects, such as second harmonic

generation (SHG) in a bulk semiconductor crystal, may pro-

vide a channel for preparation of coherent continuum states.

Efforts have been made to study the polariton-SHG interac-

tion in GaAs based microcavities, and two-photon absorption

of polaritons using SHG excitation has been observed [27].

However, no sign of Fano resonance has been reported so far.
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Here we report on the observation of polariton Fano reso-

nances in SHG spectra of ZnO microwirs. As a wide band-

gap semiconductor, ZnO has not only large exciton binding

energy (∼60 meV at room temperature (RT)), but also large

nonlinear coefficients, providing both stable cavity exciton-

polariton states and strong SHG continuum at RT. In the past

few years, these two aspects have attracted much attentions.

Striking features of cavity polariton effects, such as ultra-

strong exciton-photon coupling [25], polariton lasing at RT

and above RT [26, 28–30], polariton parametric scattering

[28], polariton-polariton coupling [31], polariton-phonon in-

teraction [32, 33], and evaporative cooling of polaritons [34]

etc. have been revealed. On the other hand, SHG effect of

ZnO has also been well explored, including the exciton en-

hanced SHG [35], SHG that influenced by crystalline struc-

ture, dimensions, grains and doping [36], second harmonic

polaritons [37] etc. Taking advantage of coherent polariton

states and SHG continuum states with comparable strength in

ZnO, Fano resonances with high coupling coefficiency can be

expected. In whispering gallery modes (WGM) resonators of

ZnO, the gain medium acts also as the optical cavity, which

provides a unique system for the large overlap in real space

of a discrete cavity polariton mode and broad SHG contin-

uum. We reveal the Fano resonances between polariton modes

and SHG. The angle-resolved spectroscopy enables us to ob-

serve the clear Fano fingerprint. Symmetric and asymmetric

line shapes are obtained due to the controllable phase shift of

the polariton mode with respect to the continuum states. The

phase-dependent q has been extracted from these data.
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FIG. 2. (a): Angle θ resolved SHG spectra with the peak at 3.175 eV,

3.172 eV, 3.169 eV, 3.155 eV, 3.151 eV from up to down. (b): the

corresponding line curves at θ=0◦, fitting with the red solid lines by

equation (1).

Fig. 1a shows the scanning electron microscope (SEM) of

a typical ZnO microwire. The diameter of the ZnO microwire

is about 1.6 µm and the c-axis is parallel to the longitudinal

crystal axis. Fig. 1b shows a schematic configuration of our

experiment. A ZnO microwire was laid on a glass substrate,

the fundamental laser beam was focused on the back and

SHG was detected from the front side. Angle-resolved spec-

tra measurements were performed along the angles θ and φ

by using a Princeton Instrument SP 750 spectrometer with the

wavelength resolution of 0.02 nm and a charge-coupled de-

tector (CCD) of Pixis 100. The detection scheme is shown in

Scheme S1 in the Supplemental material (SM). For the SHG

measurements, femtosecond laser pulses from a Ti: sapphire

laser (150 fs) served as the fundamental light source. The rep-

etition rate is 80 MHz and the wavelength can be tuned from

700 nm to 1000 nm. All the experiments were performed at

RT.

Fig. 1c shows the energy dispersion of 29th and 28th TM

polarized (electric field is parallel to c-axis) polariton modes

under continuous He-Cd laser (325 nm) excitation. The po-

lariton modes observed in the PL spectra can be fitted with

Lorentzian functions (shown in Fig. S1) [38]. The 29th po-

lariton mode has a quality factor of ∼2430, which is obtained

from the ratio E/∆E, where ∆E=1.3 meV is the full width

at half maximum (FWHM). The pure SHG radiation without

coupling with a polariton mode is displayed in Fig. S2a and

Fig. S2b in the SM. SHG spectra measured with the polar-

ization resolution are shown in Fig. S2c. The line shape of

SHG also can be well fitted by using a Lorentzian function,

giving the FWHM≈12 meV. It should be emphasized that the

FWHM of SHG is about 9.2 times larger than that of the po-

lariton, therefore it makes background SHG playing the role

of continuum states and the polariton mode being a discrete

state.

In our experiment, the power of the fundamental wave is

set to be 3.4 mJ/cm2 in order to minimize the PL emission

that may interfere with the SHG radiation. The wavelength of

SHG is set to resonate with a polariton mode. The resulting

θ-resolved spectra are shown in Fig. 2a. Both TE and TM

polariton modes were taken into account first, as the energies

of the 28th TE and 29th TM modes at θ=0◦ are quite close:

3.157 eV and 3.169 eV, respectively (see Fig. S5 in the SM)

[38], while only the TM polariton mode was found to be pop-

ulated due to the polarization selection rules. When the broad

SHG band scans from the lower energy side near 3.169 eV,

there appears a strong peak accompanied by a dip adjacent to

it. This is a signature of Fano resonance. The corresponding

spectra at θ=0◦ are shown in Fig. 2b. Their asymmetric line

shapes signify that SHG and the polariton mode are not in-

dependent in ZnO. Instead, they interfere with each other to

form a new hybrid emission in the vicinity of the resonance.

In this regime, the polariton and SHG not only are high coher-

ent but also have a large overlap in real space which results in

a large coupling efficiency.

Here we need to mention that, in the absence of the polari-

ton mode, SHG has a broad symmetric line shape with its in-

tensity independent on angle φ (Shown in Fig. S3 in the SM).

However, once SHG and polariton are in the regime of Fano

resonance, the asymmetric line shape varies with the angle φ.

As shown by the angle φ resolved spectra of SHG resonated
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FIG. 3. (a): Angle φ resolved spectral patterns. SHG and polari-

ton mode are resonant at 3.169 eV. (b): q values at each angle are

obtained by fitting each line profile. The dashed lines are the bound-

aries where q changes sign. (c) The typical line profiles taken at

φ=-27◦, -15◦, -8.3◦, 0◦, 7.7◦, 15◦, 27◦ from pattern (a). The black

dotted lines are experimental data and the red solid lines are fitted

data. These curves show the different line shapes resulting from the

Fano coupling in the system.

with 29th polariton mode in Fig. 3a (the SHG-polariton mode

resonance spectra for the 28th and 27th modes are shown in

Fig. S4 in SM). The pattern shows that the spectra inten-

sity distribution depends on the detection angle φ. As the φ

changes from -30◦ to 30◦, the positions of the dip (dark) and

the peak (bright) swap. This phenomenon indicates that in-

terference between SHG and polariton mode controls the line

shape of the spectra. To show distinctly the line shape vari-

ation with varying the angle φ, we plot the spectral profiles

at some typical angles (-27◦, -15◦, -8.3◦, 0◦, 7.7◦, 15◦, 27◦)

in Fig. 3c (black dotted curves). This phenomenal line shape

under Fano resonance condition is given by:

I = AF[
(ǫ + q)2

ǫ2 + 1
− 1] + Ib (1)

where I is the output emission spectral intensity. AF [
(ǫ+q)2

ǫ2+1
−1]

is the Fano resonance term [1]. AF is the amplitude coeffi-

cient. ε= 2(ω-ωr)/Γp is the reduced energy where ωr is the

resonant frequency and Γp is the linewidth of the polariton

mode. q denotes the Fano asymmetry factor. The second term

Ib is the Lorentzian background contributed by the broad con-

tinuum states populated by SHG. The line profiles are fitted

well using equation (1) (red solid curves) and the q values are

obtained for each curve. According to Fano, the dimension-

less parameter q introduced in equation (1) manifests the ratio

of the transition probabilities to the polariton state and to the

continuous SHG states, which can be either positive or neg-

ative depending on the phase difference of the two transition

channels. It is this parameter q that governs the resonant line

shape. In Fig 3c, the spectra at -15◦, 0◦ and 15◦ show charac-

teristic asymmetric line shapes, in these cases the probabilities

for these two transition channels are similar, leading to q near

±1. The spectra at angle -8.3◦ and 7.7◦ show a nearly sym-

metric line shape with a dip at the center, which is known as

anti-resonance or EIT-like effect in other systems [8].This is

because the value of q approaches zero here, in which case

the optical transition to the continuum SHG states dominates.

When it comes to -27◦ and 27◦, the line shapes show a peak

at the resonant position, due to the large absolute q values

of -3.8±0.3 and -4.2±0.4. This q variation is a direct con-

sequence of the phase-difference changes in the interference

between the two channels, the above results indicate that the

relative phase-difference, and hence the degree of asymmetry

of the resonant line shape depends on the angle φ. In order

to extract the phase-difference dependence of the polariton-

SHG Fano resonance, we plot the q values for each φ in Fig.

3b. It is noticeable that q is positive from -24.7◦ to -8.3◦ (and

7.7◦ to 25.5◦) , and negative in other areas. Remarkablely, q

shows a symmetric dependence on the angle φ. As far as we

know, the SHG background generated through such a ZnO mi-

crowire can be considered as light radiating from a hexagonal

medium, which has a phase that hardly changes with angle φ.

Therefore we attribute the variation of q with angle φ to the

phase shift of the polariton channel.

To describe the phase of the polariton mode quantitatively,

we calculate the near field electric field distribution for the

TM polarized 29th polariton mode in Fig. 4a using the fi-

nite element analysis (FEA) method [38]. The x and y are

real space coordinates. In our simulation, the polariton effect

manifests itself in the wavelength dependence of the effective

refractive index [25]. One can see in Fig. 4a that, the electric

field (including its phase) of the polariton mode has a strong

dependence on the angle φ. The inset in Fig. 4a shows the

equiphase surface (the black curves) for the area in the white

rectangle. The phase is zero for the dashed lines and pi for

the solid lines. In order to know precisely the angle corre-

sponding to the boundary separating opposite phases in the

momentum space, we applied the Fourier transform for Fig.

4a and obtained the far field emission pattern in Fig. 4b. The

horizontal and vertical coordinates are wave vectors projec-

tions of kx and ky, respectively. The emission pattern shows a

circle consisted of many bright maxima characterized by the

identical |k|(
√

k2
x + k2

y). The gaps between the adjacent bright

spots indicate the boundaries where the phase change sign.

Using Fig. 4a and Fig. 4b, we have obtained the dependence

of the phase ϕ on the angle φ shown in Fig. 4c. The marked

angles, consistent with those in Fig. 4b, indicate that the phase

stays above π/2 from -7.5◦ to 7.5◦, then it changes almost -π

and stay nearly below -π/2 from 7.5◦ to 23◦(and -7.5◦ to -23◦),

finally it goes sharply to π/2 beyond 23◦ or -23◦.

To obtain more insight on the coupling features mentioned

above, here we model the experiment in more details. The

time-dependent electric field can be expressed as:

E(t) = Ape−
Γp

2
te−iωpt+iϕ + Ase

−
Γs
2

te−iωs t (2)

where Ap and As are emission field amplitude of the polariton
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FIG. 4. (a): The electric field distribution pattern for the 29th polari-

ton mode in the real space calculated using finite element analysis.

Inset: the equiphase surface marked by the dashed and solid lines for

the white rectangle area. (b): The Fourier Transform of pattern (a).

The dashed lines marked the angles where the phase of the emission

electric field in pattern (a) change sign. (c): The phase ϕ v.s. φ curve

obtained with use the phase information in (a). (d): The theoretical

pattern calculated by using equation (3) with Ap/Γp being the ampli-

tude against φ obtained from (b) and As/Γs being the same order of

Ap/Γp. Γp and Γs are the FWHM (in frequency domain) of the 29th

polariton mode (1.3 meV) and SHG (12 meV) respectively. (e): The

q variation obtained by fitting each line of pattern d (red solid line)

and q(ϕ)=-cot(ϕ/2) (green dashed line).

state and SHG states. Γp and Γs are the decay rates of the two

channels respectively. ωp and ωs are frequencies of the two

channels. ϕ is the phase shift of the polariton state. In the fre-

quency domain, the frequency-dependent electric field inten-

sity Iω is obtained via the Fourier transformation of Equation

(2), which yields,

Iω = |E(ω)|2 ∝ [
A2

p

Γ2
p(1 + ε2

p)
+

A2
s

Γ2
s (1 + ε2

s)

+ 2
ApAs

ΓpΓs

(1 + εpεs)cosϕ + (εp − εs)sinϕ

(1 + ε2
p)(1 + ε2

s)
]

(3)

Here εp=(ω-ωp)/Γp and εs=(ω-ωs)/Γs. The first and the

second terms in the square bracket describe the symmetric

Lorentzian shape in the frequency domain originating from

the polariton mode and SHG respectively, and the last term

describes the coupling strength between these two charac-

ters. Using this equation, we simulated the emission pattern as

shown in Fig. 4d, and the effective q is obtained by fitting ev-

ery line profile in Fig. 4e (red solid curve) using equation (1).

These theoretical results show good agreement with the ex-

perimental results shown in Fig. 3b. Thereafter for the sake of

simplicity, Γs is approximated to infinity, which means SHG

is replaced by an infinitely broad background state, and the

amplitude of the background state is much larger than that of

the discrete state (As/Γs≫Ap/Γp ), which provides a strong

enough continuum of states. Thus the correspondence be-

tween q and the phase shift ϕ is obtained as (more details are

in SM) [38]:

q = −cot
ϕ

2
(4)

This result means that by manipulating the phase ϕ of the dis-

crete state one can directly alter the asymmetry parameter q,

which is similar to the results obtained in an atomic system

[18]. Knowing this, and with use the dependence of the phase

ϕ on the angle φ in Fig. 4c, we mapped the angle φ into the q

parameter and plotted the curve of q v.s. φ in Fig. 4e (green

dashed curve). It agrees with the experimental values of q

well. This indicates that Eq. (4) is sufficiently accurate in our

problem. Having analytical expression, we are able to under-

stand the variation of the complex SHG line shape with the

angle φ. The phase φ-sensitive Fano resonance exhibits rich

physics for the polariton-SHG coupling.

In conclusion, we have experimentally demonstrated and

theoretically analyzed a Fano resonance in the SHG radia-

tion spectra of an individual semiconductor microwire. In the

coupling between exciton-polariton and SHG, the polariton

mode serves as a discrete state and SHG serves as the con-

tinuum. Angle-resolved spectra exhibit pronounced variation

of the Fano line shape, resulting from the phase shift of the

cavity polariton mode. These observations are important for

the precision control of the Fano line shapes in semiconductor

microwire.
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