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Resource theory is a widely-applicable framework for analyzing the physical resources required for
given tasks, such as computation, communication, and energy extraction. In this paper, we propose
a general scheme for analyzing resource theories based on resource destroying maps, which leave
resource-free states unchanged but erase the resource stored in all other states. Our theory reveals
fundamental connections among basic elements of resource theories, in particular, free states, free
operations and resource measures. In particular, we define a class of simple resource measures that
can be calculated without optimization, and that are monotone nonincreasing under operations that
commute with the resource destroying map. We apply our theory to the resources of coherence and
quantum correlations (e.g., discord), two prominent features of nonclassicality.

Introduction.—Resource theory originates from the
observation that certain properties of physical systems
become valuable resources when the operations that can
be performed are restricted so that such properties are
hard to create. A prototypical example of such a property
is quantum entanglement [1, 2], which becomes a key re-
source for many quantum information processing tasks,
when one is restricted to local operations and classical
communication (LOCC). The framework of resource the-
ory has been applied to various other concepts in quan-
tum information, such as purity [3], magic states [4] and
coherence [5, 6], and to broader areas, such as asymmetry
[7] and thermodynamics [8].

Theories of different resources share a similar struc-
ture. In general, quantum resource theories contain three
basic elements: free states, free (allowed) operations,
and resource measures (monotones). These elements are
closely related to one another. For example, free oper-
ations should not be able to create resource from free
states, and resource measures are expected to be mono-
tone nonincreasing under free operations. In recent years,
considerable effort has been devoted to developing a uni-
fied framework of resource theories [9–11]. In particular,
Ref. [9] studies the general case where the set of free
operations is maximal, i.e., all (asymptotically) resource
non-generating operations are allowed, and when the re-
source satisfies several postulates (e.g., the set of free
states is convex).

Some key aspects of resource theories are not addressed
by existing frameworks, however. For example, an oper-
ational resource theory is usually specified by physical
restrictions on the set of allowed operations: LOCC and
Thermal Operations [8, 12, 13] are prominent examples.
But such restrictions are often stronger than merely non-
generating, and may lead to mathematical difficulties in
studying transformation rules and monotones. Charac-
terizing a proper set of free operations is frequently a ma-

jor difficulty in establishing successful resource theories,
and we do not yet have general principles and under-
standings for nonmaximal theories. Moreover, existing
results do not apply to some resources, such as discord,
where the set of free states is nonconvex.

In this paper, we introduce a simple but universally
applicable theory of resource-free properties of quantum
operations that addresses these issues. Our theory is
based on the notion of resource destroying maps: for
a given resource, a resource destroying map leaves free
states unchanged, but destroys the resource otherwise.
Key features of resource destroying maps are discussed.
For example, an immediate observation is that a resource
destroying map is not linear (thus cannot be represented
by a quantum channel) if the set of free states is non-
convex. As will be seen, many important properties of
our framework sharply contrast linear resource destroy-
ing maps with nonlinear ones. We demonstrate that the
concept of resource destroying maps helps unify and sim-
plify the analysis of resource theories, allowing us to de-
termine whether a quantum operation exhibits a group
of fundamental resource-free properties, in addition to
non-generating. A basic result of our theory is that any
contractive distance between a state and its resource-
free version is monotone nonincreasing under all such
operations. Finally, we apply the framework of resource
destroying maps to coherence and discord. In particu-
lar, we find that the theory of discord, which is poorly
understood in terms of resource theory (largely due to
its nonconvexity), can exhibit a simple structure in this
framework. Moreover, the analysis of discord helps il-
lustrate several peculiar properties of nonlinear resource
destroying maps.

Resource destroying maps.—Here we formally define
the notion of resource destroying maps, the key concept
of our theory. Let F be the set of free states for a cer-
tain theory. For all input states ρ, a resource destroying
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map λ satisfies the following requirements: (i) resource
destroying: if ρ 6∈ F , λ(ρ) ∈ F ; (ii) nonresource fixing: if
ρ ∈ F , λ(ρ) = ρ. In other words, a resource destroying
map outputs a free state if the input is not free, and leaves
the input unchanged otherwise. The resource destroying
map characterizes the resource-free space: F consists pre-
cisely of the fixed points of λ. Resource destroying maps
are idempotent due to (ii). They are also surjections onto
codomain F since every free state is a preimage of itself.
It is helpful to draw an analogy between the structure
of resource destruction and a fiber bundle: λ defines a
bundle projection onto F . Call a non-free state a parent
state of its image free state. Then each free state defines
a family consisting of corresponding parent states (the
fiber) and the free state itself.

Note that a resource destroying map does not have
to be completely positive or linear, and can be highly
nonuniform. However, we are mostly interested in the
physically motivated maps, usually with simple descrip-
tions that work universally for all inputs. For example,
the simplest case is when the resource destroying map
can be represented by a quantum channel. However, it
can be shown that λ cannot be linear (thus not a chan-
nel) when F is nonconvex. (See Supplemental Material
[47] for details.) In addition, for theories of correla-
tions among multiple parties, local resource destroying
maps cannot be a channel either. Notably, entanglement
breaking channels [14] do not necessarily leave separable
(unentangled) states unchanged, and so are not entan-
glement destroying maps. Consider uncorrelated states:
the channel that stabilizes all local states can only be the
identity, which does not destroy resource. Necessary and
sufficient conditions for the existence of resource destroy-
ing channels are recently investigated in Ref. [15].

For many theories, a simple resource destroying map
is easy to identify. For example, complete dephasing in
the preferred basis is an obvious coherence destroying
map; Haar (uniform) twirling over the group G is a G-
asymmetry destroying map [16]. For discord-type quan-
tum correlations, the resource destroying map cannot be
a channel (whether local or not) since discord-free (clas-
sically correlated) states form a nonconvex set [17], but
it can simply be a local measurement in an eigenbasis of
the reduced density operator. In the following, we use
upper and lower case Greek letters to denote channels
and general maps respectively.

Resource-free conditions.—Now we are ready to intro-
duce a group of general conditions with simple mathe-
matical forms, based on resource destroying maps, that
correspond to various typical resource-free properties of
quantum operations.

Consider a theory with resource destroying map λ. Let
E be some quantum operation. We start from

E ◦ λ = λ ◦ E ◦ λ, (1)

where ◦ is the composition of maps. An equivalent form

FIG. 1. An illustration of the resource-free conditions. The
set of free states is closed under resource non-generating op-
erations; States belonging to the same family are mapped to
the same target family by resource non-activating operations.

of this condition is the following: E(λ(ρ)) = λ(E(λ(ρ)))
for all ρ. Recall that only free states are fixed points of λ.
This condition indicates that the output of E ◦λ is always
a fixed point of λ, thus free. In other words, the set of
free states is closed under E . So we call this condition the
non-generating condition, and correspondingly the oper-
ations satisfying this condition resource non-generating
operations. This is a necessary constraint on free op-
erations, since any other operation can create resource,
thus trivializing the theory. Theories that allow all such
operations (under some assumptions including convex-
ity) possess a common structure: they are reversible and
has regularized relative entropy as the unique monotone
asymptotically [9, 10].

Next, we consider the following dual form of the non-
generating condition:

λ ◦ E = λ ◦ E ◦ λ. (2)

Think of the output of λ as the free part of an input state.
This condition means that E cannot make use of the re-
source stored in any input to affect the free part. We call
this condition the non-activating condition. An alterna-
tive interpretation is that such operations never break up
a family: members of the same family must be mapped
to the same target family (not necessarily the original
one though). An illustration of the non-generating and
non-activating conditions is given in Fig. 1.

In general, the non-generating and non-activating con-
ditions can hold independently. Due to the idempotence
of λ, the sufficient and necessary condition for an oper-
ation to be resource non-generating and non-activating
simultaneously is that it commutes with λ:

λ ◦ E = E ◦ λ. (3)

We call this condition the commuting condition.
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Recall that a quantum operation E can be specified by
Kraus decomposition E(·) =

∑
µKµ · K†µ, where {Kµ}

are Kraus operators satisfying
∑
µK

†
µKµ ≤ I. Each

Kraus arm Eµ(·) ≡ Kµ ·K†µ corresponds to a (unnormal-
ized) generalized measurement outcome with probability
tr(Kµ · K†µ). In practice, one may want to require that
the non-generating, non-activating, or commuting condi-
tions be satisfied even when considering selective mea-
surements, i.e., the outcome of the measurement is ac-
cessible. This leads to the following modification of each
condition: there is some Kraus decomposition of E such
that all Eµ satisfies the condition. We call such counter-
parts selective conditions. In other words, selective oper-
ations can be implemented by some POVM that exhibits
corresponding resource-free properties, even if measure-
ment outcomes are retained. Here we do not impose these
conditions on every Kraus decomposition: typically, the
relevant decomposition is specified by how we implement
the operation, and this can be an overly strong require-
ment that places extra contraints irrelevant to the re-
source under study [18]. We shall compare the strength
of the original conditions and their selective counterparts
in the next section.

For a given resource-free set F , the definition of λ is
in general nonunique. Since λ is surjective, the set of re-
source non-generating operations is not affected by differ-
ent choices of λ. In contrast, resource non-activating op-
erations and thus commuting operations can depend on
the bundle structure specified by λ. These observations
also hold for the selective version of each condition. Ex-
plicit examples are given in Supplemental Material [47].

General properties.—Here we introduce some typical
features of our framework that hold generally in dif-
ferent theories. We shall see that some of these fea-
tures manifestly contrast linear resource destroying maps
with nonlinear ones. Denote the sets of resource non-
generating, non-activating and commuting operations as
X̄, X̄∗ and X, respectively, and their selective versions by
subscript s. By definition, they satisfy X = X̄ ∩ X̄∗ and
Xs = X̄s ∩ X̄∗s.

For a theory with resource destroying channel Λ, one
can easily construct these operations. Notice that Λ◦Ω ∈
X̄, where Ω is an arbitrary operation, by the idempotence
of Λ. Meanwhile, Λ◦Ω belongs to X̄∗ only if Ω itself does.
Similarly, Ω◦Λ ∈ X̄∗. Destroying the resource in both the
input and output allows both conditions to be satisfied:
Λ◦Ω◦Λ ∈ X. Selective operations can be constructed by
similar procedures on each Kraus arm. Let {Mµ} be a
Kraus decomposition of Ω, and Ωµ(·) ≡Mµ ·M†µ denote
the action of each Kraus arm. It can be directly verified
that each Λ◦Ωµ specifies a resource non-generating Kraus
arm, i.e.,

∑
µ Λ ◦ Ωµ ∈ X̄s. Similarly,

∑
µ Ωµ ◦ Λ ∈ X̄∗s

and
∑
µ Λ ◦ Ωµ ◦ Λ ∈ Xs.

One may also ask if the resource-free properties hold
for compositions and convex combinations. The answer

is Yes for compositions for any λ. For example, X is obvi-
ously closed under composition: given two operations E1
and E2 satisfying E1,2 ◦ λ = λ ◦ E1,2 for some resource de-
stroying map λ, it holds that E2◦E1 is also a λ-commuting
operation: by using the respective commuting conditions,
we obtain (E2◦E1)◦λ = E2◦λ◦E1 = λ◦(E2◦E1). This con-
clusion also holds for X̄, X̄∗ and selective classes, which
can be proven by similar arguments. On the other hand,
all classes are closed under convex combination when λ
is linear map. Again take the commuting condition as an
example: (pE1 + (1− p)E2) ◦λ = pE1 ◦λ+ (1− p)E2 ◦λ =
pλ ◦ E1 + (1 − p)λ ◦ E2 = λ ◦ (pE1 + (1 − p)E2). Similar
arguments work for other conditions. For nonlinear λ,
however, the last equality does not necessarily hold. For
the same reason, when λ is linear, selective conditions
are stronger than their respective original versions (e.g.,
Xs ⊂ X), but otherwise this is not necessarily true.

We now show that the commuting condition plays a
special role in the quantification of resources, a central
theme of resource theories. The most basic property of
a proper resource measure (a non-negative real function
of states) is monotonicity under free operations: free op-
erations should not be able to increase the amount of
resource. A natural type of measure is the minimal dis-
tance to the set of free states, where the distance is given
by some function D(ρ, σ) defined on two states ρ and
σ that is contractive, i.e., obeys the data processing in-
equality D(Γ(ρ),Γ(σ)) ≤ D(ρ, σ) for any operation Γ.
Note that D is not necessarily a metric. Nonsymmetric
distances such as relative Rényi entropies are also valid
choices of D. Formally, a distance measure of resource
is given by D(ρ) := infσ∈F D(ρ, σ). Monotonicity holds
for such measures due to the minimization. However,
such optimizations are often computationally hard. Now
consider the following function:

D̃(ρ) := D(ρ, λ(ρ)). (4)

Due to the absence of minimization, D̃(ρ) ≥ D(ρ). How-
ever, if we restrict the set of allowed operations to X, this
measure also satisfies the monotonicity requirement:

D̃(ρ) ≥ D(Γ(ρ),Γ(λ(ρ)))

= D(Γ(ρ), λ(Γ(ρ))) ≡ D̃(Γ(ρ)), (5)

where the inequality follows from the contractivity of D.
Therefore, for any resource theory with free operations
satisfying the commuting condition, we have a class of
computationally easy monotones which avoid optimiza-
tions (given that λ is suitably defined). We should note
that D̃ is not necessarily continuous everywhere when λ
is nonlinear, which requires more careful analysis in prac-
tice (as will be demonstrated for discord). The possibility
of retaining measurement outcomes leads to the selec-
tive monotonicity condition—monotonicity under selec-
tive measurements on average. Following a similar argu-
ment as Eq. (5), a general result we can obtain at the
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moment is that D̃ obeys selective monotonicity under
selective commuting operations, for a restricted class of
D including quantum relative entropy (details in Sup-
plemental Material [47]). Recall that, when λ is linear,
Xs ⊂ X: selective monotonicity is stronger than mono-
tonicity; however, this is not necessarily the case when λ
is nonlinear.

Examples.—We first focus on the theory of quantum
coherence. Here, a basis of interest is specified, and den-
sity operators that are diagonal in this basis are inco-
herent (free). The study of coherence from a resource
theory perspective has attracted a considerable amount
of attention and effort in recent years. A few definitions
of coherence-free operations stemmed from various per-
spectives are proposed and studied lately [5, 6, 19–25],
most of which can directly emerge from our framework
as follows. Complete dephasing in the preferred basis,
denoted by Π, is a natural coherence-destroying map.
Let X̄(Π) and X̄∗(Π) and X(Π) be the sets of coher-
ence non-generating, non-activating and commuting op-
erations given by Π respectively (an additional subscript
s for selective operations). X̄(Π) contains all coherence
non-generating operations, which are recently analyzed
in Ref. [25]. Members of X̄∗(Π) cannot activate the co-
herence stored in the input in the sense that E(·) and
E ◦ Π(·) are always indistinguishable by measuring inco-
herent observables. So X(Π) contains operations that
can neither create nor activate coherence. In the prepa-
ration of this paper, we became aware that these op-
erations are very recently studied as dephasing-covariant
operations in Refs. [23, 24]. X̄s(Π) and Xs(Π) are respec-
tively the sets of Incoherent Operations [5] and Strictly
Incoherent Operations [22]. Detailed discussions of these
classes and further comparisons to other relevant propos-
als of coherence-free operations are provided in the Sup-
plemental Material [47]. For any theory where the free
operations belong to X(Π), we know that D(·,Π(·)) for
any contractive D represents a coherence monotone. In
comparison, monotonicity of some D may fail if more op-
erations are allowed. For example, not all relative Rényi
entropies are monotone under X̄(Π) [24].

Next, we consider discord [26, 27], the most general
form of nonclassical correlations. (See Ref. [17] for a com-
prehensive review.) Discord places a stronger constraint
on free states than entanglement in the sense that it can
exist in separable states. Discord has been shown to be
the underlying resource for various tasks [28–31]. How-
ever, a formal treatment of discord in the resource theory
framework (e.g., transformation rules) remains elusive,
mostly because our understanding of discord-free oper-
ations is limited, and most existing general results for
resource theory do not directly apply to discord, due to
its nonconvexity. Here, we focus on the one-sided dis-
cord as measured on subsystem A of a bipartite state
ρAB , and local operations acting on the same subsystem.
The ideas can be generalized to nonlocal operations and

multipartite cases. A state is regarded as discord-free if
there exist local rank-one projective measurements that
do not perturb the joint state. Such states take the form
ρAB =

∑
i pi|i〉A〈i| ⊗ ρiB , where {|i〉} is a complete or-

thonormal basis of A. These states are conventionally
called classical-quantum (CQ) states. Due the noncon-
vexity of CQ, discord can be created just by mixing, and
discord destroying maps cannot be linear. Suppose the
local density operator ρA = trBρAB admits a spectral
decomposition ρA =

∑
i pi|i〉〈i|. Then

πA(ρAB) :=
∑
i

(|i〉A〈i| ⊗ IB)ρAB(|i〉A〈i| ⊗ IB), (6)

i.e., a local measurement in an eigenbasis of A, is the
most natural discord destroying map. Obviously, πA is
nonlinear and thus not a channel: the basis in which the
projection takes place is dependent on the input state,
and not uniquely defined within degenerate subspaces.
Also note that πA never changes the local states.

We now plug πA into the conditions. Let EA be a local
operation acting on A. Note that we are considering the
effect on the joint space: For example, the non-generating
condition reads (EA ⊗ IB) ◦ πA = πA ◦ (EA ⊗ IB) ◦ πA.
This condition determines whether an operation always
maps a CQ state to another. As opposed to entan-
glement, discord can be created by certain local op-
erations. Such operations have been studied in Refs.
[32, 33]. X̄∗A(πA) and XA(πA) have not been consid-
ered before to our knowledge. We can classify a va-
riety of simple quantum operations according to their
behaviors in the theory of π as follows (proofs in Sup-
plemental Material [47]). Local unitary-isotropic chan-
nels (mixture of a unitary channel and depolarization,
which are intuitively strongly discord-free) indeed be-
long to XA(πA) and Xs,A(πA). Rank-one projective mea-
surements, however, are in X̄s,A(πA)\XA(πA). Further-
more, local mixed-unitary channels belong to all selec-
tive classes, but some of them are not in the original
classes, supporting our general observation that selective
conditions are not necessarily stronger than their original
counterparts for nonlinear λ.

As shown earlier, contractive distances between any
ρAB and πA(ρAB), e.g., S(ρAB ||πA(ρAB)), is monotone
under XA(πA) (including all unitary-isotropic channels),
and selectively monotone under Xs,A(πA) (including all
mixed-unitary channels). This quantity is equivalent to a
physically motivated simple measure of discord called di-
agonal discord [34]. (Similar quantities are independently
discussed in Refs. [35–39].) Diagonal discord may suf-
fer from discontinuities (infinitesimal perturbations may
lead to a sudden jump in the value of diagonal discord)
[40, 41], however it can be shown that they only occur at
degeneracies [42].

Ref. [43] adopts an approach similar to the idea of re-
source destroying maps to study nonclassicality of opera-
tions. There, operations that commute with einselection
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[44] (complete dephasing) in a certain basis are regarded
as classical. The key difference between the setup of Ref.
[43] and the discord theory discussed here is that the
basis for einselection needs to be specified, thus not all
discord-free states are the fixed points of such einselec-
tion [45]. Ref. [43] is more about local coherence in some
preferred basis rather than discord.

Concluding remarks.—In this paper, we propose a sim-
ple framework for resource theories based on the notion of
resource destroying maps. Our theory provides a general
scheme for understanding the power of quantum opera-
tions in relation to certain resources. The theory shows
how to extend results that have been previously derived
for specific resources to a more general class of resource
theories. In particular, our framework may lead to con-
ceptual advances in understanding nonconvex theories
such as discord. It would also be interesting to apply
the framework of resource detstroying maps to other im-
portant resource theories, such as those of entanglement,
asymmetry and thermodynamics.

Note added.—During the final revision of this paper,
we became aware of a recent review on discord [46], which
includes a detailed discussion of the importance and dif-
ficulties of studying discord under the resource theory
framework, and the state of the art of this field (in par-
ticular the local commutativity-preserving operations as
the maximal set of local free operations).
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