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A recent granular rheology based on an implicit ‘granular fluidity’ field has been shown to quan-
titatively predict many nonlocal phenomena. However, the physical nature of the field has not been
identified. Here, the granular fluidity is found to be a kinematic variable given by the velocity fluc-
tuation and packing fraction. This is verified with many discrete element simulations, which show
the operational fluidity definition, solutions of the fluidity model, and the proposed microscopic
formula all agree. Kinetic theoretical and Eyring-like explanations shed insight into the obtained
form.

PACS numbers: 45.70.Mg, 47.57.Gc, 83.10.Ff, 83.80.Fg

The rheology of dry granular materials is commonly
studied in homogeneous simple (planar) shear tests. In
these tests, the inertial granular rheology can be ob-
served, in which a one-to-one relationship exists between
two dimensionless numbers: µ = τ/P , the ratio of shear
stress τ to normal stress P , and the inertial number
I = γ̇d/

√
P/ρs, which nondimensionalizes the shear rate

γ̇ by the (mean) particle size d, P , and the solid density
ρs [1, 2]. Empirically, the bijection between µ and I is
often fitted to the form [3]

µ = µloc(I) = µs +
∆µ

I0/I + 1
, (1)

where µs is a static yield coefficient, below which the sys-
tem does not flow, µ2 is an upper limit for µ at high rates,
∆µ = µ2 − µs, and I0 is a dimensionless constant. De-
spite its effectiveness in steady simple shearing, granular
behavior in more general circumstances can be observed
to deviate from the inertial rheology. In inclined plane
flows, where the µ field is spatially homogeneous and
given by the tilt angle, the angle at which a flowing layer
stops depends explicitly on the size (thickness) of the pile
[4, 5]. In steady but non-uniform flow geometries, flow
is observed in zones where µ < µs and the µ(I) rela-
tion is not one-to-one in these regions [6, 7]. Moreover,
a “secondary rheology” has been observed in which the
dynamics of a loaded probe submerged in quiescent ma-
terial is influenced by the motion of far-away boundaries
of the granular system [8, 9]. Such phenomena deviat-
ing from the inertial law are describable by considering
nonlocal effects. Various microscopic notions have been
considered for the intrinsic length-scale [10–15].

Recently, a size-dependent granular rheological frame-
work has been proposed based on a state field called the
“granular fluidity.” With minimal fitting parameters, the
model has shown the capability of quantitatively predict-
ing a range of nonlocal effects in multiple geometries, in-
cluding all the deviations from µ(I) behavior described
above [16–21]. The granular fluidity field, denoted g, is
presumed to be governed by a dynamical partial differ-

ential equation (PDE) [21]:

t0ġ = A2d2∇2g −∆µ

(
µs − µ
µ2 − µ

)
g − b

√
ρsd2

P
µg2 (2)

where A is a dimensionless constant called the nonlocal
amplitude, t0 is a time-scale, and b = ∆µ/I0 [22]. The
g field influences the flow through its role in the consti-
tutive relation between stress and strain-rate: γ̇ = gµ.
Together, the result is a flow model with an intrinsic
length-scale given by d. The inertial law, Eq 1, can be
obtained when the flow field is homogeneous (∇g = ~0)
and in steady state. While these equations define the
model from a mathematical perspective, the physical na-
ture of the granular fluidity field is not clear. To be valid
in its role within the constitutive model, granular fluid-
ity should be a kinematically observable state variable.
However, it is not clear this is the case, and it has been
suggested g may not represent a kinematic field [23]. We
are left to ask: What is the granular fluidity?

In this letter, we identify a microphysical definition for
the granular fluidity. While many microscopic variables
have been proposed to underpin grain-size-dependent
flow models — including stress fluctuations [24], plastic
strain-rate variations [25], granular eddies [26, 27], sliding
contact fraction [28, 29], or spots of free volume [30] — we
find the granular fluidity is well-defined solely in terms of
velocity fluctuations and packing fraction. Using discrete
element method (DEM) simulations in multiple configu-
rations at steady-state, we compare the predictions of
this microscopic formula with the constitutive definition
g = γ̇/µ, as well as steady solutions of g from the PDE
for granular fluidity. The strong agreement found gives
evidence that the PDE is in fact a model for the behavior
of this kinematic field. Lastly, we identify two possible
reasons for the microscopic description of g, using kinetic
theory and also using an Eyring-like model, which illus-
trates a possible fluctuation activated process of granular
flows.

We start with the hypothesis that for hard particles, g
should relate to velocity fluctuations, δv, a quantity key
to a number of granular flow models [8, 31–35]. From
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its constitutive definition, g = γ̇/µ has dimensions of
inverse time. We propose the relevant time scale is d/δv
such that the fluidity g can be nondimensionalized as
gd/δv. Supposing the only other variable affecting g is
the packing fraction, Φ, the normalized fluidity would be
expressible as

gd

δv
= F (Φ)⇒ g =

δv

d
· F (Φ), (3)

for some function F .

To evaluate the hypothesis, DEM simulations of three
kinds of configurations were implemented in the open-
source software LAMMPS [36]. The particles simu-

lated were spheres with solid density ρs = 2500kg/m
3
,

mean diameter d = 0.0008m, and polydispersity of
20% to prevent crystallization. The particle interaction
model [7, 18] contains elastic forces, damping effects,
and Coulomb friction using a spring-dashpot law defined
by stiffness in the normal and tangential directions kn,
kt = 2/7kn, damping in the normal and tangential direc-
tions γn, γt and surface friction coefficient µc = 0.4. We
set γt = 0 and calculate γn to give restitution coefficient

e = 0.1: γn = −2lne
√
mkn/(π2 + ln2e). Throughout,

kn/Pd > 104 is kept, which ensures that the deforma-
tion of the particles is small enough to be in the hard
particle regime. The simulated system is a cuboid do-
main (8×20× ∼ 50 (x×y×z), 9096 particles in total) of
particles shearing between two planar rough walls made
of particles of the same properties at the top and bottom.
The bottom wall is fixed in all cases. If a pressure bound-
ary condition at the top wall is needed, the top wall’s
height is controlled to set the pressure using a feedback
process [7]. To apply a fixed volume boundary condi-
tion, the top wall is held at fixed z. Periodic boundary
conditions are applied to the other four boundaries.

When steady state is reached, we output data every
20,000 steps, collecting a total of N=3000 snapshots for
each simulation. We used three families of configura-
tions: homogeneous planar shear, planar shear with grav-
ity, and chute flows, as shown in FIG. 1. The confining
pressure at the top boundary is Pwall = Pf · P0, where
P0 = 5 × 10−6kn/d, the gravity is G = Gf · g0, where
g0 = 0.1P0d

2/m, and the horizontal velocity of the top
wall is Vwall = Vf ·

√
6P0/πρs, where Pf , Gf and Vf are

dimensionless factors to control the boundary conditions
and the gravity. In gravity-free planar shear cases, the
confining pressure is chosen as Pf = 1 and ten different
Vf ’s are used. In planar shear with gravity tests, Gf is
fixed at Gf = 1 and five cases are simulated with four
different Vf ’s and two Pf ’s. In chute flow cases, inclined
angles of θ = 90◦, 75◦, 60◦, 45◦ are simulated. Gravity
is increased to Gf = 3 in the slanted configurations and
the top wall is fixed in the x direction, Vf = 0. We test
fixed volume top-wall constraints for all chute cases. We
also perform fixed top-wall pressure constraints in the

FIG. 1: Configurations of granular flow geometries
tested, with qualitative velocity profiles plotted. (a)
planar shear; (b) planar shear with gravity; (c) chute
flows. Chute flow cases with fixed top-wall pressure are
also performed.

θ = 90◦ chute case, where, to make a direct compari-
son, the confining pressure is chosen to be the same as
the mean pressure at the top wall in the corresponding
fixed volume case. In total, twenty different flows are
simulated.

In all geometries, the time averaged fields should be
homogeneous in each horizontal (x− y) plane. For each
snapshot, we first produce coarse-grained fields in z us-
ing a slab-shaped coarse-graining region, comprising the
whole horizontal expanse (x−y planes) and a z-thickness
of W = 2d. We then average these instantaneous layer-
wise values arithmetically in time. To compute δv at
each snapshot, the layer-wise-averaged instantaneous ve-
locity is first calculated. We then subtract it from the
particle velocities to obtain the velocity deviation. The
velocity fluctuation δv is defined as the root of granular
temperature which is the mean square of the velocity de-
viation. For our purposes, it is key that δv be defined this
way, based on deviations from an instantaneous average
of the velocity; definitions that compute deviations from
a time-averaged velocity are common but inappropriate
here (and do not collapse the data) because they pick
up time-oscillations in otherwise rigid media rather than
measuring only relative motion of grains. The particle-
wise stress tensor is calculated considering both the con-
tact contribution and the kinetic contribution, as de-
fined in [7], though the contact contribution is two orders
larger than the kinetic almost everywhere in our tests.
After the average Cauchy stress tensor has been obtained
in a layer, the pressure is defined as P = −σii/3 and
the shear stress is defined as the equivalent shear stress

τ =
√
σ′ijσ

′
ij/2, where σ′ij = σij + Pδij is the stress de-

viator. See Supplemental Material [37] for details of the
averaging method and its verification.

To be free of wall effects, we have excluded layers
within 2d of the walls. To ensure steady-state condi-
tions, we accept data from layers that have experienced
a strain no smaller than 25 in sampling. See Supplemen-
tal Materials [37] for more discussion on the selection of
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these criteria. The span of inertial numbers in the data
presented is 0.0006 to 0.7, which covers the range from
quasi-static to collisional flow [2].

FIG. 2: Data from all chute flow tests (B), planar shear
with gravity tests (◦) and homogeneous planar shear
tests (×). A hyperbola (solid line) is fit for F (Φ).

To evaluate if g = F (Φ)δv/d, we calculate the layer-
wise fluidity field g = γ̇/µ, δv, and Φ in all cases. For
added precision, here we evaluate d as the layer-wise
mean particle size; though quasi-monodisperse, the pack-
ing shows slight (. 10%) spatial variation in d. We plot
normalized fluidity gd/δv against packing fraction Φ in
FIG. 2 for all 20 flows simulated. Each data point corre-
sponds to a different z value, except gravity-free planar
shear cases, which are nearly uniform and show a single
data point per test. The data from different configura-
tions collapse well, suggesting that packing fraction and
velocity fluctuations are sufficient to define the granular
fluidity. F (Φ) has a nearly constant behavior for low Φ
values, which transitions into a roughly linear decrease
at high values. This behavior can be fit to a hyperbola

F (Φ) =
−(Φ−0.58)+

√
(Φ−0.58)2+1.54×10−4

0.048 +2.0, which van-
ishes at Φ = 0.63, approximately random close packing.
This fit line provides a good match to our data, though
we were only able to obtain accurate steady-state data
up to Φ ≈ 0.62. Finite values of g above 0.63 may be
possible. An interpretation for the collapse of the data
and the corresponding shape of F (Φ) will be given later.

For further examination, in FIG. 3 the predicted fluid-
ity fields from the microscopic formula (using the above
fit for F (Φ)) are compared with γ̇/µ and solutions of Eq
2 in all configurations tested. In the PDE, b = 0.98,
µs = 0.3701 and µ2 = 0.95 are obtained by fitting the
µ(I) relation in the homogeneous planar shear cases as
shown in FIG. 3(a), and we choose A = 0.43. All these
values are close to the values found for glass spherical
beads [3, 17], with the exception of µ2 which we find to
be larger in our discrete simulations [38]. The boundary
condition for g is taken as the wall value of γ̇/µ from

DEM and the PDE is run to steady-state using a finite-
difference method to obtain steady g profiles. Note, the
fluidity profiles of 90◦ chute flow cases with fixed volume
boundary conditions and fixed pressure boundary condi-
tions, compared in FIG. 3(c), match well, showing that
the type of boundary condition does not have a signifi-
cant influence on the constitutive behavior in the interior.
This is also the case if the incline angle is varied, which
we verified in additional tests. Overall, the agreement of
the three descriptions of the g field in all geometries ev-
idences the generality of the g = F (Φ)δv/d formula and
its apparent connection to the steady solutions of Eq 2.

In an attempt to explain the fluidity formula, we have
found two possible routes, one using kinetic theory and
another based on activated processes. Regarding kinetic
theory, in Lun et al.’s work [39], P and the viscosity η in
a granular gas depend on Φ and granular temperature T :

P (Φ, T ) = ρF1(Φ)T and η(Φ, T ) = ρdF2(Φ)
√
T , (4)

where ρ is the density. Under these relations, the opera-
tional definition of fluidity would imply

g =
γ̇

µ
=
P

η
=

ρF1(Φ)T

ρdF2(Φ)
√
T

=

√
T

d

F1(Φ)

F2(Φ)
=
δv

d

F1(Φ)

F2(Φ)
,

whose form is the same as Eq. 3. Though the fitted F (Φ)
is different from F1(Φ)/F2(Φ) given in [39], the similarity
of the form is suggestive. Since nonlocal effects are most
evident in quasi-static regions, an extended kinetic the-
ory [40] might be needed to further this connection, where
behavior beyond binary collisions is modeled. That said,
there is evidence in dense annular shear experiments [41]
of a density- and temperature-dependent granular viscos-
ity consistent with the above form.

Even though our formula for g agrees with the func-
tional scaling from kinetic theory, we find, contrary to
the kinetic theoretical picture, that the individual forms
for pressure and viscosity (Eq 4) are actually not well
satisfied in our data beyond Φ = 0.57; see Supplemental
Material [37] for additional data comparisons and more
discussion relating to models in [39, 41, 42]. The pressure
may collapse better if permitted to depend on additional
fields, like gradients of strain-rate, or on particle proper-
ties such as stiffness [43]. Since Eq 2 evolves g as a single
state variable, it is natural to ask if the observed relation
g(δv,Φ) can be reduced to depend on only one state vari-
able rather than two. Perhaps the pressure could be used
to eliminate Φ or δv from the system. However, without
a clear equation relating P to Φ and δv in dense zones,
such a reduction looks unlikely.

Eyring’s model [44] for activated processes has an anal-
ogy in the flow behavior of glassy solids [45], which has
also been considered in the context of granular flows
[8, 24]. We propose the following Eyring-like micro-
model. Suppose a material element contains a collec-
tion of microscopic ‘sites’, each able to undergo a shear
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FIG. 3: Comparison of three definitions of g: DEM results of γ̇/µ (�, �), solutions of Eq 2 (lines), and predictions of
the microscopic formula, Eq 3 (×,+). Comparisons in (a) homogeneous planar shear cases, (b) planar shear with
gravity, (c) 90◦ chute flow cases with different boundary conditions, and (d) chute flow cases at different inclinations.
Results of DEM simulations using fixed volume BC’s are indicated with (�,+) and fixed wall pressure BC’s with
(�,×).

event or ‘hop’. We express the element’s total shear rate
through the product:

γ̇ =


Fraction
of sites
able to
shear




Net # of
forward shear
events per site

per second




Strain
per

shear
event


(5)

We assume [45] that the fraction of sites with enough lo-
cal free volume to support a shear event is some func-
tion of the coarse-grained packing fraction, f1(Φ). It
may approach 0 at a jammed Φ value, ≈ 63%. The
second term can be expressed as the product of an at-
tempt frequency for perturbations, ω, and the net prob-
ability, Pr+−Pr−, that a perturbation causes a positive
shear event vs a backward (negative) event on a site. The
frequency of attempts should be related to the fluctua-
tional motion of the particles, so we assume ω is given
by δv f2(Φ)/d, i.e. the ratio of velocity fluctuation to
a characteristic fluctuation length d/f2(Φ). For the net
probability, Pr+ − Pr− is 0 by symmetry when there
is no external shear loading, and otherwise should grow
with the loading. Hence, the linearized dependence on
µ should follow Pr+ − Pr− = f3(Φ)µ. Because the ra-
tio ρδv2/P is smaller than 0.01 almost everywhere, the
kinetic energy of fluctuations is too small to assist flow
events, which is why we have assumed, as others have
[24], that the net probability is independent of δv (see
Supplemental Materials [37] for additional details about
the form of Pr+ − Pr−). Lastly, we make the common
assumption [24, 45, 46] that the strain per flow event is a

constant, γ0, related to a typical ‘jump distance’ normal-
ized by the width of a shear event. We now multiply the
three factors together to get γ̇ = γ0

δv
d f1(Φ)f2(Φ)f3(Φ)µ.

Dividing by µ, one obtains

g =
γ̇

µ
=
δv

d
· γ0f1(Φ)f2(Φ)f3(Φ)︸ ︷︷ ︸

F (Φ)

. (6)

Since C and γ0 are constant, Eq 6 has the same form as
Eq 3. This analysis suggests shear flow in granular media
may be a fluctuation activated process.

Supposing f1 is the dominant contribution to F , FIG. 2
suggests a natural interpretation. When Φ < 0.57, the
packing is open enough that all sites are able to flow, and
f1 holds at its maximum. As packing fraction increases
above 0.57, the number of sites with enough free volume
for flow gradually decreases. The Cohen-Turnbull the-
ory of free-volume distribution in glassy materials gives
a similar behavior for the fraction of sites above a critical
free-volume threshold [47].

Herein, we have proposed a relation connecting granu-
lar fluidity to granular velocity fluctuations and packing
fraction, and validated it in DEM simulations of multi-
ple configurations. All three descriptions of the granular
fluidity field — (i) its operational definition (g = γ̇/µ)
extracted from DEM simulations, (ii) its definition from
the fluidity governing PDE, and (iii) the new microphys-
ical definition — match well with each other in multi-
ple geometries under multiple conditions. It is also in-
teresting to compare the description herein to related
nonlocal models for non-granular materials (e.g. emul-
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sions, suspensions), which deal with the ‘standard’ flu-
idity f = γ̇/τ (inverse viscosity) [48, 49] rather than
g. Theories have previously suggested f relates micro-
scopically to the rate of plastic events [49], which has
been correlated to shear-rate variations in experiments
[25]. Although the variables are different, the fact that
fluctuation in some variable is key to both pictures sug-
gests a bridge between the different amorphous material
classes. Deriving Eq 2 from the microscopic description
of g remains crucial future work. Under kinetic theory
assumptions, Eq 2 might relate to a heat equation. We
should also point out that the above tests only used one
combination of restitution coefficient and surface friction
coefficient; the function F (Φ) need not stay the same as
these inputs are varied. Lastly, though we have found two
state variables sufficient to describe fluidity, other fields
such as higher moments of velocity fluctuation or fabric
invariants [50] may provide additional improvements.

QZ and KK acknowledge support from National Sci-
ence Foundation grant CBET-1253228 and the MIT De-
partment of Mechanical Engineering.
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