Picosecond Spin Seebeck Effect
Johannes Kimling, Gyung-Min Choi, Jack T. Brangham, Tristan Matalla-Wagner, Torsten Huebner, Timo Kuschel, Fengyuan Yang, and David G. Cahill
Phys. Rev. Lett. 118, 057201 — Published 1 February 2017
DOI: 10.1103/PhysRevLett.118.057201
Abstract

We report time-resolved magneto-optic Kerr effect measurements of the longitudinal spin Seebeck effect in normal metal/$Y_3Fe_5O_{12}$ bilayers driven by an interfacial temperature difference between electrons and magnons. The measured time-evolution of spin accumulation induced by laser-excitation indicates transfer of angular momentum across normal metal/$Y_3Fe_5O_{12}$ interfaces on a picosecond time scale, too short for contributions from a bulk temperature gradient in YIG. The product of spin-mixing conductance and interfacial spin Seebeck coefficient determined is of the order of 10^8 A m$^{-2}$ K$^{-1}$.
Introduction. - Spin transport in magnetic insulators and through metal/insulator interfaces is extensively studied in the fields of spintronics and spin caloritronics, providing new routes for information technologies and heat-to-electricity conversion [1–3]. A key role in spin caloritronics is played by the longitudinal spin Seebeck effect (LSSE), which describes spin transport through the interface between a normal metal and a magnetic insulator upon heat transport through that interface [4].

The coupling between itinerant and localized electrons across the interface can be explained by an interfacial exchange interaction [5, 6]. Based on this interaction, itinerant electrons scattering off the interface can create or annihilate magnons, thus allowing for interconversion of independent electron spin current in the normal metal and magnon spin current in the magnetic insulator. LSSE theories consider thermally excited spin currents in both directions across a metal/insulator interface: A spin current from insulator to metal driven by a thermal spin pumping mechanism, and a spin current from metal to insulator driven by random spin transfer torques [7–9]. In equilibrium, these opposite currents are equal. Application of a temperature gradient creates a net spin current that is proportional to the interfacial temperature difference between electrons and magnons. In addition to this interfacial LSSE, can a temperature gradient in the bulk of the insulator drive spin transport by magnons, which results in accumulation or depletion of magnons near the interface enhancing or reducing the spin current from insulator to metal [10–13]. To date, isolation of interfacial LSSE from bulk LSSE has not been achieved experimentally.

Prior LSSE measurements are based on the inverse spin Hall effect (ISHE): the voltage signal measured is assumed to be caused by a spin current that has been converted into a transverse charge current. The symmetry of the resulting voltage signal with respect to the direction of the applied magnetic field is used as an indication of the ISHE. ISHE-based LSSE measurements have been reported for various insulators, e.g., ferrimagnetic garnets such as Y$_3$Fe$_5$O$_{12}$ (YIG) [14], Bi-substituted YIG [15], and Gd$_3$Fe$_5$O$_{12}$ [16], ferrimagnetic ferrites such as NiFe$_2$O$_4$ [17, 18], CoFe$_2$O$_4$ [19, 20], and Fe$_3$O$_4$ [21], as well as paramagnetic Gd$_3$Ga$_5$O$_{12}$ [22] and antiferromagnetic Cr$_2$O$_3$ [23] or MnF$_2$ [24]. The experiments are typically reported as observations of the LSSE. However, ISHE-based LSSE measurements are susceptible to unwanted voltage sources, e.g., proximity Nernst effects [25] and conventional Seebeck effect driven by thermal Hall heat current in the ferromagnetic layer [26]. Hence, independent LSSE measurements that are not based on the ISHE are desirable to corroborate
the spin current hypothesis of the LSSE.

To date, time-resolved ISHE-based LSSE measurements have achieved a time-resolution of the order of 1-100 nanoseconds [27, 28]. Agrawal et al. investigate micrometer-thick YIG layers and report that the time scale of the LSSE is determined by the rise-time of the temperature gradient in the YIG layer (~300 ns). They conclude that the LSSE is predominantly a bulk effect caused by magnon spin diffusion along the temperature gradient in the YIG layer. Based on this interpretation, they estimate a magnon spin diffusion length of ~500 nm for thermally excited magnons. Schreier et al. investigate YIG layers with thicknesses between 50 nm and 30 µm applying heating frequencies up to ~1 GHz [28]. They measure roll-off frequencies of the LSSE that increase with decreasing YIG-thickness. Schreier et al. attribute this roll-off to the finite magnon-phonon relaxation time in YIG and explain changes in the roll-off frequencies by assuming that the spectrum of magnons predominantly contributing to the LSSE shifts to higher frequencies when decreasing the YIG thickness. However, the roll-off frequencies for the different YIG-thicknesses approximately match the thermal penetration depths in YIG at the respective frequencies, which supports the findings of Agrawal et al. discussed above.

Here, we present a LSSE experiment that is based on the time-resolved magneto-optic Kerr effect (TR-MOKE) and provides sub-picosecond time resolution. Our experiment is not susceptible to spurious effects that often plague ISHE-based LSSE measurements. Taking advantage of the picosecond time scale, our experiment involves sizable temperature differences across Au/YIG and Cu/YIG interfaces, of the order of 10 to 100 K. The short time scale and the dominant temperature difference across the NM/YIG interface allow us to selectively probe the interfacial LSSE.

Experiment and model.- The samples are normal metal (NM)/YIG bilayers on Gd$_3$Ga$_5$O$_{12}$ (GGG) substrates with NM thicknesses between 35 and 103 nm and YIG thicknesses between 17 and 250 nm (compare Table I in the Supplemental Material). We use Au and Cu as NM materials with long spin-relaxation times (one order of magnitude longer compared to Pt) [29]. Moreover, Au and Cu exhibit small electronic heat capacities and weak electron-phonon coupling, which facilitate large electron temperature excursions during laser-excitation.

The YIG of samples I through V was grown at Ohio State University by off-axis sputtering. The NM layers were grown by off-axis sputtering, for samples II and III in-situ and for samples III through V ex-situ after YIG deposition. References [30] and [31] demonstrate
that the off-axis sputtered YIG thin films have a slightly larger off-axis lattice constant than bulk YIG, proper stoichiometry within the resolution of energy-dispersive x-ray spectroscopy, no apparent structural defects and impurities in areas examined by scanning transmission electron microscopy, interfacial roughness with Au less than 1 Å, a saturation magnetization significantly higher than for bulk YIG (∼2100 G compared to 1790 G), and a narrow ferromagnetic resonance in-plane linewidth (4.3 G at 9.61 GHz).

Samples VI through VIII were grown in collaboration between University of Alabama and University of Bielefeld, Germany. The YIG was deposited by pulsed-laser deposition. For samples VI and VII, Au was ex-situ sputtered on as-grown YIG/GGG; for sample VIII, Cu was sputtered after vacuum annealing of YIG/GGG at 200°C and 4.6 × 10⁻⁹ mbar for 1 h. The roughness of the NM/YIG interfaces from Alabama/Bielefeld are of the order of 5 Å, as determined using x-ray reflectivity.

In our measurements, done at University of Illinois, the NM layer is excited with a train of optical pulses at a repetition rate of 80 MHz and absorbed fluences of ∼1 J m⁻² [32]. The laser energy is absorbed by electrons increasing the electron temperature and then transferred to phonons via electron-phonon scattering. To describe this heat transfer problem, we use a two-temperature model (2TM) of electrons and phonons,

\[C_e \frac{\partial T_e}{\partial t} - \Lambda_e \frac{\partial^2 T_e}{\partial x^2} = g_{ep}(T_p - T_e) + p(z,t), \]

\[C_p \frac{\partial T_p}{\partial t} - \Lambda_p \frac{\partial^2 T_p}{\partial x^2} = g_{ep}(T_e - T_p), \]

where \(C \) denotes volumetric heat capacity, \(\Lambda \) denotes thermal conductivity, \(g_{ep} \) is the coupling parameter between electrons (e) and phonons (p), and \(p(z,t) \) is the optical absorption profile determined using a transfer matrix optical model [32]. We assume that the electronic heat capacity is proportional to the electron temperature, \(C_e = \gamma_e T_e \), where \(\gamma_e \) is the electronic heat capacity coefficient. For Au and Cu, this low temperature approximation is valid for electron temperatures below ∼1000 K [33].

The temperature excursion of electrons is of the order of 100 K during laser excitation (compare Fig. 1). After thermalization of electrons and phonons in the NM layer, the finite thermal conductance of the NM/YIG interface maintains a temperature-difference between electrons and YIG-phonons of the order of 10 K for ∼100 picoseconds. Energy transfer across the NM/YIG interface is dominated by phonons. Energy transfer to YIG-magnons can occur via direct coupling of electrons and magnons across the NM/YIG-interface and
through phonon-magnon coupling of YIG.

SSE theories predict that the temperature difference between YIG magnons and NM electrons drives a spin current across the NM/YIG interface [7–9]:

$$j_S = g_{\uparrow\downarrow} \frac{e^2}{h} S_S (T_e - T_m),$$

(3)

where $g_{\uparrow\downarrow}$ is the real part of the spin-mixing conductance per conductance quantum $\frac{e^2}{h}$ and S_S is the interfacial spin Seebeck coefficient. Magnon heat capacity and phonon-magnon coupling parameter of YIG are unknown. Strong magnon-phonon coupling in YIG at room temperature has been conjectured by several authors [27, 34–36]. Cornelissen et al. consider a magnon-phonon thermalization time of 0.1-1 picosecond [37]. Therefore, we approximate the magnon temperature by the phonon temperature of the YIG layer determined from the 2TM. In the results section below, we provide arguments that support the validity of this approximation.

During the pump-probe measurements, a magnetic field of \sim0.4 T perpendicular to the sample plane rotates the YIG magnetization out-of-plane. If a significant amount of spin accumulation is generated in the NM layer, the resulting non-equilibrium magnetization rotates the polarization of light upon reflection [29]. We probe this polar Kerr effect with a train of sub-ps optical pulses at the same repetition rate of 80 MHz and a lower absorbed fluence of \sim0.03 J m$^{-2}$. By varying the time delay between successive pump and probe pulses, we track rise and decay of spin accumulation subsequent to laser excitation [38]. To determine zero time delay and temporal heating profile, we use a GaP photodiode at the sample location, which measures the temporal profile of correlated pump and probe pulses by two-photon absorption. The magnitude of the polar Kerr signal for a given amount of spin accumulation is determined by the strength of spin-orbit coupling [29]. We use conversion factors between polar Kerr rotation and spin accumulation estimated in prior works (24×10^{-9} rad m A$^{-1}$ for Au [29] and 4.5×10^{-9} rad m A$^{-1}$ for Cu [38]). The Kerr rotation per magnetization unit is approximately five times larger for Au compared to Cu, due to stronger spin-orbit coupling in Au. A description of the experimental setup can be found in the Supplemental Material [32] including Refs. [39–48].

To describe spin accumulation in the NM layer, we consider the time-dependent spin diffusion equation

$$\frac{\partial \zeta_S}{\partial t} - D \frac{\partial^2 \zeta_S}{\partial x^2} = \frac{\zeta_S}{\tau_S},$$

(4)
and connect the spin current in equation (3) with the spin diffusion current $j_S = \sigma \frac{\partial \zeta}{\partial x}$ at the NM/YIG interface. In the above equation, $\zeta_S = \zeta_\uparrow - \zeta_\downarrow$ is the difference of the chemical potentials of up- and down-spins, σ is the electrical conductivity, $D = \sigma / [e^2 N(E_F)]$ is the diffusion constant of electrons, where $N(E_F)$ is the electronic density of states at the Fermi energy, and τ_S is the spin relaxation time. We fit the solution of the spin diffusion model to the measurement data using τ_S and the product $\alpha \equiv g_{\uparrow\downarrow} \frac{e^2}{h} S_S$ as free parameters (compare Fig. 2). Due to the large diffusion constant of electrons in Au and Cu, the spin accumulation created at the NM/YIG interface diffuses to the NM surface on a sub-picosecond time scale. Hence, the spin accumulation near the NM surface varies by less than 1% across the optical penetration depth. Therefore, we assume that TR-MOKE measures the spin accumulation at the surface of the NM layer. The sensitivity of spin accumulation to α is a constant; the sensitivity of spin accumulation to τ_S peaks shortly after laser-excitation, when the temperature excursion of electrons falls back to the phonon temperature [32].

Results.- The measurement signal rises during laser-excitation and decays to a plateau a few picoseconds after laser-excitation (symbols in Fig. 2). The remaining signal decays slowly with the interfacial temperature difference for ~ 1 ns [32]. Solid lines in Fig. 2 are fit curves to the measurement data using the spin-diffusion model described above. Since laser-excitation initially creates a nonequilibrium state of the electrons that is not captured by the 2TM [49], we only fit decay and plateau of the measurement signal.

For the different Au/YIG samples, we obtain fit results for α that vary from $\sim 3 \times 10^7$ to $\sim 1 \times 10^8$ A m$^{-2}$ K$^{-1}$ and fit results for τ_S that vary from ~ 0.8 to ~ 1.7 ps; For Cu/YIG sample from OSU, we obtain $\alpha = 3.4 \pm 1.2 \times 10^8$ A m$^{-2}$ K$^{-1}$ and $\tau_S = 3.7 \pm 0.8$ ps; For Cu/YIG sample from Alabama/Bielefeld, we obtain $\alpha = 2.4 \pm 0.3 \times 10^8$ A m$^{-2}$ K$^{-1}$ and $\tau_S = 2.5 \pm 0.3$ ps; The errors were determined from contours of constant variance $\sigma^2 = 2\sigma^2_{\text{fit}}$ between model prediction and measurement data in the two-dimensional parameter space of τ_S and S_S, where σ^2_{fit} is the variance when τ_S and S_S assume their fit values. Fit results for the individual samples are listed in Table I of the Supplemental Material [32], together with layer thicknesses determined from picosecond acoustics and x-ray reflectivity measurement, electrical conductivities determined from sheet resistivity measurements, and other model parameters. In the Supplemental Material, we also demonstrate that the Faraday effect in the microscope objective does not contribute to our measurement signals, show exemplary measurements that demonstrate a sign change for negative magnetic fields, and present...
reference measurements on a Au/glass sample that show no measurement signal [32].

Though the FWHM of the time-correlation of pump and probe pulses is \(\sim 1.2 \) ps, the measurement signal does not rise before \(t \approx 0 \) ps. This delay cannot completely be explained by the finite diffusion time of spin and heat through the NM layer, which is considered in the model. The discrepancy between model and data during laser-excitation could correspond to the characteristic time of the scattering processes involved. This characteristic time can be estimated using the time-energy-correlation \(\Delta t \propto h/\Delta E \), where \(h \) is the Planck constant and \(\Delta E \) is the interaction energy between electrons and magnons [50]. According to Ref. [13], magnon frequencies in YIG at 300 K are of the order of 5 THz. This gives a characteristic time of the interfacial scattering process of \(\Delta t \approx 200 \) fs, which is still a factor 2-3 too small for explaining the delayed rise of the measurement signal. However, recent SSE studies conjecture that predominantly low-frequency magnons (< 1 THz) contribute to the SSE [51–53], which could explain the delayed rise of the measurement signal. On the other hand, the discrepancy could also indicate that the 2TM fails in the sub-picosecond time scale, where the electrons cannot be accurately described by a Fermi-Dirac distribution.

Good agreement between model and measurement signal over the fit range for different YIG thicknesses investigated and the finite measurement signal after electron-phonon thermalization in the NM layer support our assumption that the magnon temperature remains close to the phonon temperature. However, transfer of angular momentum across the NM/YIG interface is accompanied by energy transfer, which could lead to a reduction of the interfacial temperature difference between electrons and magnons. Therefore, we reanalyze the measurement data of the Au/YIG sample I considering a 2TM of magnons and phonons in the YIG layer. Based on the fit result \(\alpha \approx 10^8 \) A m\(^{-2}\) K\(^{-1}\) (compare Table I in the Supplemental Material), we estimate an electron-magnon thermal conductance across the NM/YIG interface of \(G_{em} = \alpha k_B T/(2e) \approx 10^6 \) W m\(^{-2}\) K\(^{-1}\). Assuming a magnetic heat capacity of YIG of \(C_m = 1200 \) J m\(^{-3}\) K\(^{-1}\), theoretically calculated in Ref. [13], we estimate a minimum magnon-phonon coupling constant of \(g_{mp} \approx 3 \times 10^{14} \) W m\(^{-3}\) K\(^{-1}\), required to obtain fit results within the error bars of the results obtained when setting the magnon temperature equal to the phonon temperature.

Explanation of our measurement signals in terms of bulk LSSE would require that a significant magnon temperature gradient develops in the YIG layer on a sub-picosecond time scale. In our experiments, the YIG magnons are heated via heat transport across
the NM/YIG interface. Due to the dominating heat capacity of phonons, sub-picosecond fast heating of YIG magnons requires direct energy transfer between NM electrons and YIG magnons. As interfacial electron-magnon coupling needed for energy transfer simultaneously drives the interfacial LSSE, we can assume that bulk LSSE in our experiment presupposes the interfacial LSSE.

Indications on the significance of bulk LSSE can be achieved by varying the thickness of the YIG layer [28]. If present in our experiment, bulk LSSE would depend on the YIG thickness, if the length scale of magnon diffusion at the picosecond time scale exceeds the YIG thickness, and if magnon-phonon relaxation occurs on a time scale longer than the picosecond time scale. In that case, we expect that both interfacial LSSE and bulk LSSE increase with increasing YIG thickness due to the following reasoning: The interfacial LSSE increases with YIG thickness, because the additional magnon heat capacity decreases the rise of the magnon temperature and thus the interfacial temperature difference between electrons and magnons. The bulk LSSE also increases with YIG thickness, because the magnon temperature gradient in the YIG layer increases if the YIG thickness approaches or exceeds the length of magnon diffusion at the picosecond time scale. As the fit parameter α does not increase when changing the YIG thickness from 20 nm to 100 nm to 250 nm (sample I through sample IV), we draw the following conclusions: 1) The YIG magnon temperature remains close to the phonon temperature at the picosecond time scale; 2) Contributions from bulk LSSE are negligible on picosecond time scales.

Variation of the Au-thickness from 103 nm for sample VI to 29 nm for sample VII yields similar results for α. Since the 29-nm-thick Au layer is not completely opaque, this result indicates that light reflected in YIG and in GGG does not significantly contribute to the measurement signals in our experiment.

Using temperature-dependent measurements, we find that the fit parameter α decreases monotonously with temperature and vanishes approximately at the Curie temperature of YIG (compare Fig. 3). The measurement signals before and after heating are reversible [compare open squares and asterisks in Fig. 3(a)]. The spin relaxation time does not show a significant temperature dependence within the errorbars of our measurements. Fluence-dependent measurements indicate that the LSSE signal scales nonlinearly with the fluence, as expected based on the temperature coefficient of the electronic heat capacity (compare Fig. S10 in the Supplemental Material [32]).
Weiler et al. report ISHE-based LSSE measurements on Pt/Au/YIG/GGG and Pt/Cu/YIG/GGG samples assuming interfacial LSSE [54]. In their model that is based on the theory of Ref. [7], the parameter α is defined as

$$\tilde{\alpha} = \frac{g_{\uparrow\downarrow} \gamma ek_B}{\pi M_S V_a},$$

where γ is the gyromagnetic ratio, k_B is the Boltzmann constant, M_S is the saturation magnetization, and V_a is the magnetic coherence volume. Weiler et al. experimentally determine a spin-mixing conductance of Au/YIG and Cu/YIG interfaces of $g_{\uparrow\downarrow} \approx 4 \times 10^{18}$ m$^{-2}$. Using Eq. (5) with $M_S = 140$ kA m$^{-1}$ and $V_a = (1.3 \text{ nm})^3$ as reported by Weiler et al. [54], we obtain $\tilde{\alpha} \approx 16 \times 10^8$ A m$^{-2}$ K$^{-1}$, which is one order of magnitude larger than our results. Note that the measurements of Weiler et al. include possible contributions from bulk LSSE.

Conclusion.—Using a novel method that is not based on the ISHE, we achieved LSSE measurements at the picosecond time scale. Our experimental results corroborate LSSE theories that predict a spin current across the interface of a normal metal with a ferromagnetic insulator if magnons and electrons are out-of-equilibrium. We have isolated the interfacial LSSE and obtain a product of spin-mixing conductance and spin Seebeck coefficient of the order of 10^8 A m$^{-2}$ K$^{-1}$ for Au/YIG and Cu/YIG interfaces. Though our measurements indicate that the LSSE is active at the picosecond time scale, we find that the LSSE signal rises with a delay of 0.5 to 1 ps compared to our model prediction. To understand this delay, new LSSE theories are required that address the dynamics induced by sub-picosecond laser pulses.

This work was carried out in part in the Frederick Seitz Materials Research Laboratory Central Research Facilities, University of Illinois. Financial supports by the Army Research Office under Contract No. W911NF-14-1-0016, by the German Research Foundation under DFG-Grant No. KI 1893/1-1 and KU 3271/1-1 (priority program Spin Caloric Transport, SPP 1538), and by the Department of Energy (DOE), Office of Science, Basic Energy Sciences, under Grants No. DE-SC0001304, are kindly acknowledged. We further thank Amit V. Singh, Zhong Li and Arunava Gupta from Center for Materials for Information Technology (MINT), Tuscaloosa, Alabama, as well as Alessia Niesen, Alexander Boehnke, and Günter Reiss from Bielefeld University, Germany, for assistance and discussion during sample preparation and for making available laboratory equipment.
Electronic address: kimling@illinois.edu

[32] See Supplemental Material at [URL will be inserted by publisher] for details on experimental setup, model parameters, measurement data and fit curves for samples II through IV and samples VI through VIII, a discussion of through plane, in-plane, and temporal heating profiles, example sensitivity plots, a discussion of spurious signals, TR-MOKE measurements over longer time scales up to 500 ps, picosecond acoustic measurements, and fluence-dependent TR-MOKE measurements.

[38] G.-M. Choi, C.-H. Moon, B.-C. Min, K.-J. Lee, and D. G. Cahill, Nat. Phys. 11, 576 (2015), ISSN 1745-2473, URL http://dx.doi.org/10.1038/nphys3355.

FIG. 1: (Color online). **Conceptual diagram and temperature transients.** (a) Absorption of a pump laser pulse of picosecond duration generates a temperature difference between NM electrons and YIG magnons. Interfacial coupling between electrons and magnons induces spin accumulation in NM, which is probed by time-delayed probe laser pulses. (b) Example temperature transients of Cu electrons and YIG phonons calculated using the 2TM, Eqs. (1) and (2).
FIG. 2: (Color online). Thermally-induced spin accumulation in Au and Cu. TR-MOKE data (symbols) measured on Au (Cu)/YIG/GGG samples of different layer thicknesses stated in the figure. Solid lines show fit curves obtained using the spin-diffusion model, Eqs. (3) and (4). Dashed lines show temperature excursion of electrons calculated using the 2TM, Eqs. (1) and (2).
FIG. 3: Temperature-dependent measurements. (a) TR-MOKE data (symbols) measured on sample I at different temperatures as indicated. Solid lines show fit curves obtained using the spin-diffusion model. (b) Fit results for $\alpha = g_{\uparrow \downarrow} e^2 / h S_S$ (left y-axis) and spin relaxation time τ_S (right y-axis) as function of temperature.