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We study high frequency response functions, notably the optical conductivity, in the vicinity of
quantum critical points (QCPs) by allowing for both detuning from the critical coupling and finite
temperature. We consider general dimensions and dynamical exponents. This leads to a unified
understanding of sum rules. In systems with emergent Lorentz invariance, powerful methods from
conformal field theory allow us to fix the high frequency response in terms of universal coefficients.
We test our predictions analytically in the large-N O(N) model and using the gauge-gravity duality,
and numerically via Quantum Monte Carlo simulations on a lattice model hosting the interacting
superfluid-insulator QCP. In superfluid phases, interacting Goldstone bosons qualitatively change
the high frequency optical conductivity, and the corresponding sum rule.

A quantum critical point (QCP) is a zero-temperature
phase transition, driven by quantum fluctuations,
reached by tuning a non-thermal parameter such as a
magnetic field [1], as shown in Fig. 1. Proximity to
a QCP alters many observables, even if the (detuned)
ground state is otherwise conventional. Of particular im-
portance are dynamical response functions such as the
optical conductivity σ(ω) [1–14], where changing the fre-
quency probes physics at different energy scales set by the
non-thermal detuning and by the temperature. What of-
ten complicates the analysis of the real-time dynamics,
especially on short time scales, is the destruction of quasi-
particles at the QCP, and the corresponding abundance
of incoherent excitations at finite but small detuning.

In this letter, we focus on a large family of non-metallic
QCPs [1] found in magnetic insulators, Dirac semimetals,
cold atomic gases in optical lattices [15–17], thin film su-
perconductors or arrays of Josephson junctions [2]. This
will serve as comparison ground for the more intricate
metallic QCPs occuring in heavy fermion materials for
example [18]. Specifically, we study how the detuning of
the non-thermal parameter from its critical value, as well
as temperature, modify the optical conductivity. In par-
ticular, our analysis at large frequencies is not restricted
to the quantum critical fan. We derive sum rules for
the conductivity that generalize the standard f -sum rule
[19] to the scaling regime near QCPs. Our methods are
not perturbative in any interaction strength. We test
our predictions using large-scale quantum Monte Carlo
simulations of an interacting superfluid-insulator QCP.
While our focus is on the portions of the phase diagram
smoothly connected to the critical fan, we also point out
the qualitative changes to σ(ω) and the resulting sum
rules which result from interacting Goldstone bosons in
broken-symmetry phases.

Setup: Let us consider a system near a QCP that is
reached by tuning a non-thermal parameter g to zero.
We work in the universal scaling regime, at frequencies
smaller than microscopic (UV) scales, and assume that
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FIG. 1. Phase diagram near a canonical quantum critical
point. g is the non-thermal coupling that needs to be tuned.
The dotted lines roughly delimit the quantum critical “fan”.

hyperscaling is obeyed. Such a system is described by
the following low-energy action in d spatial dimensions:

S = Scritical − g
∫

dtddx O(t,x), (1)

where O is the only relevant operator whose coupling g
necessitates fine-tuning; it has (spatial) scaling dimension

∆ = d+ z − 1/ν, (2)

where ν > 0 is the correlation length critical exponent,
and z is the dynamical exponent. The equal-time 2-point
function of O at the QCP is thus 〈O(0,x)O(0, 0)〉 ∝
1/|x|2∆. For example at the superfluid-insulator QCP
in 2d belonging to the Wilson-Fisher universality class,
O ∼ φaφa is the “mass” term of the 2-component or-
der parameter field φa. At T = 0, the correlation length
diverges as ξ ∼ g−ν in the insulator.

We are interested in probing the properties of the
nearly critical system by studying dynamical response
functions such as the optical conductivity: σ(ω) =
1
iω 〈Jx(−ω)Jx(ω)〉g,T , where ω is the frequency, and J is
the current operator that enters in the retarded correla-
tor. Near the QCP, the conductivity will obey scaling:
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σ(ω) = ω(d−2)/zf±

(
ω
|g|zν ,

ω
T

)
, where f± is a dimension-

less scaling function that depends on which side of the
transition the system is poised. We have set ~ = kB = 1,
and the charge Q= 1 and c= 1, where c appears in the
energy scale c|k|z. Other response functions such as or-
der parameter susceptibilities or the shear viscosity will
have an analogous structure.

Large frequencies: We focus on the conductivity at
high frequencies ω � T, |g|zν , which allows us to con-
trollably study the deviations away from criticality. The
resulting asymptotics will also serve as the key ingredient
in the derivation of sum rules for the response functions.
Our first main result is that the asymptotic behavior is

σ(ω) = (iω)(d−2)/z(
σ∞ + c1

g

(iω)(d+z−∆)/z
+ c2

〈O〉g,T
(iω)∆/z

+ · · ·
)
, (3)

where σ∞, c1,2 are real constants fixed by the universal-
ity class, independent of detuning and T . The σ∞ term
is the conductivity of the critical theory; the c1,2 terms
arise from deviations from the QCP due to detuning and
temperature. Note that the c1 term in brackets simply
scales as ω−1/ν , by virtue of (2). In odd d, the imaginary
part of σ can have a non-universal logarithmic contribu-
tion, not written here. For simplicity, we consider the
generic case where the c1,2 power-laws are not equal, and
more generally do not differ by 2n/z (n being an integer),
i.e. 2∆ 6=d+ z + 2n.[20]

When z= 1, recent work has derived [11] the c2 term
in (3) at T >0 but zero detuning g=0. Here, we identify
the new effects coming from detuning, and their inter-
play with temperature. In particular, the c1 term purely
arises from g and can have important consequences on
the dynamics. Its existence was glimpsed deep in the
quantum critical fan, T � |g|zν , in a specific AdS/CFT
calculation [14], and in fact holds much more broadly.
For CFTs (z= 1) we will derive (3), present a universal
expression for c1/c2, and confirm our predictions with
two independent computations in non-trivial CFTs. For
z 6= 1, we provide a general scaling argument for the c1
term, and confirm that Eq. (3) is satisfied by a class of
strongly interacting QC theories described by the gauge-
gravity duality.

Working at general z, we first explain the origin of
the c1 term by using a scaling argument. Let us imag-
ine that the system is at T > 0 in the QC fan. Since
there is no phase transition in the fan, the conductiv-
ity will receive a correction δσ that is analytic in the
coupling g about g = 0, which generally will be lin-
ear. Further, by using the scaling dimension of g, and
the fact that ω � T is the dominant energy scale, we
get δσ ∼ g/ω(2+z−∆)/z. We stress that this term does
not depend on T . A more precise and general argu-
ment can be made by first expressing the dynamical con-
ductivity as σ(ω) = 1

iω 〈JxJxe−ig
∫
x
O〉TZ0,T /Zg,T , using

(1), where Zg,T is the full partition function. The ex-

pectation value is taken using the g = 0 action, and
temperature T ≥ 0. We expand e−ig

∫
x
O to first or-

der in g, and evaluate the resulting 3-point function
〈Jx(ω)Jx(−ω)O(ω̃ → 0)〉T = ω(∆−z−d)/zF(T/ω), for a
scaling function F (note that spatial momenta are set to
zero). Generically, F(0) 6= 0 and is a property of the
QCP at T = 0. Hence, as ω� T , c1 = F(0) and is T -
independent. If there is no phase transition as we vary T
at fixed g 6=0, by adiabaticity c1 must remain unchanged
all the way to, and including, T =0.

In contrast to the c1-term, the c2 term depends on both
g and T through the expectation value of O, and was pre-
viously identified at finite temperature but zero detuning
g=0 (and z=1) [11]. Let us recall the main idea of that
derivation, focusing on the case z = 1, and see how it gen-
eralizes to g 6=0. The Kubo formula for the conductivity
states that we need to evaluate the current-current cor-
relation function. Since we are interested in short times
(large-frequencies) we consider the operator product ex-
pansion (OPE) of Jx(t, 0)Jx(0, 0) in the t→0 limit. Cru-
cially, by spacetime locality the product can be replaced
by a sum of local operators evaluated at t= 0, with in-
creasing scaling dimensions. The first non-trivial term in
the sum will generally arise due to the leading relevant
operator at the QCP, O, and will be ∼ t∆−2dO(t = 0).
We can take the expectation value of the OPE at finite
g and T since we work at short times, t� |g|−νz, T−1.
Fourier transforming then leads to the c2 term in Eq. (3).
c2 itself depends on neither g nor T ; it is related to a
coefficient in the OPE. In contrast, the z 6= 1 case is not
as simple due to the lack of a sharp notion of spacetime
locality needed to constrain the OPE. The c2 term at
z 6=1 is allowed by scaling, and below we will confirm its
existence in a class of interacting Lifshitz theories.

The perturbative expansion used to derive the c1-term
is different from the commonly used perturbative expan-
sions about a free (Gaussian) theory: it uses the structure
of the generally interacting QCP itself to determine the
corrections at finite detuning. The expansion should hold
when the detuned system has a finite correlation length,
but can fail in regions separated from the “fan” by a
phase transition, where potentially new gapless modes
can arise. We will see an example of this failure later.

We have obtained the asymptotic expansion (3) near
generic QCPs. In the context of classical critical phe-
nomena, similar expansions for short-distance spatial cor-
relators of the order parameter have been found for ther-
mal Wilson-Fisher fixed points in 3D (where z = 1)
[21, 22]. The coefficients in the expansion for these spatial
correlators have recently been computed for the strongly-
coupled Ising critical point [23]. These classical results
are most similar to (3) analytically continued [24, 25]
to imaginary time, when z = 1 and T = 0. In this
limit, the asymptotic behavior of short-distance correla-
tors contains both analytic and non-analytic terms in the
thermal detuning parameter (T − Tc), since 〈O〉∼ |g|ν∆

where g is interpreted as (T −Tc) under the quantum-to-
classical mapping. This highlights that (3), just as in the
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classical case, cannot be derived via a single perturbative
expansion. Our derivation indeed illustrates the different
mechanisms behind the c1 and c2 terms, and is valid near
QCPs at finite g and T , as well as when z 6=1.

Universal ratios: For QCPs described by CFTs (z=
1) the expansion described above to get the c1 term is
called conformal perturbation theory, and is very powerful
because the 3-point function 〈J(x1)J(x2)O(x3)〉QCP is
fixed by conformal symmetry and operator dimensions
up to a single theory-dependent constant (not the case
for general z). The conformal symmetry thus allows us
to show that for all CFTs the ratio c1/c2 is universal and
only depends on ∆ and the normalization of O:

c1
c2

= COO
−Γ(4−∆)Γ(∆− 3

2 )

26−4∆Γ(1 + ∆)Γ( 3
2 −∆)

, c2 = CJJO, (4)

where we have given the answer in 2d. Γ is the
gamma function, and COO appears in the correlator
〈O(−p)O(p)〉QCP = COOp2∆−3 expressed in frequency-
momentum space. The real constant CJJO enters in the
3-point function 〈JJO〉QCP. The detailed derivation of
Eq. (4) and its generalization to d 6=2 is given in [26].

In order to get insight about the generic z case, we
employ the holographic gauge-gravity duality [37–39] to
study charge transport in a class of interacting large-N
matrix field theories. These are dual to gravitational the-
ories existing in a (d+2)-dimensional curved spacetime
whose isometries mapt to the Lifshitz symmetries of the
matrix field theories at general z. This approach is useful
because techniques such as conformal perturbation the-
ory, which are non-perturbative in interaction strength
and robust against the large N limit, are not known for
z 6= 1. Details of the computation will be presented in
[40]; we give the result for 〈JJO〉 for general d in [26].
We follow the logic of conformal perturbation theory to
demonstrate (3) and predict c1,2; a direct computation
of the high frequency asymptotics of σ(ω) using gauge-
gravity duality confirms our prediction [40]. In 2d, we
find

c1
c2

=
−COO Γ(2 + 2−∆

z )Γ(∆−1
z − 1

2 )

2
2
z (2+z−2∆)Γ(1 + ∆

z )Γ( 1
2 + 1−∆

z )
, c2 = CJJO, (5)

for 2∆ 6= d+z+2n, for integer n. Results for general d can
be found in [26]. We note that (5) reduces to (4) when
z=1. Unlike (4), the holographic result for c1/c2 at z 6=1
is unlikely generic. Indeed, 〈Jx(ω1)Jx(ω2)O(ω3)〉QCP is
not sharply constrained by Lifshitz symmetry. We do
expect, however, that the asymptotic form of (3) remains
the same near other z 6= 1 QCPs. Indeed, above we have
provided a general scaling argument for the c1-term at
any z.

Sum rules: We can use the high-frequency expansion
Eq. (3) to derive sum rules for the conductivity. This was
previously done for CFTs at finite temperature but zero
detuning [7, 11, 41, 42]. At g 6= 0, one must take into
consideration the new c1 term in the asymptotic expan-

sion (3), which will drastically change the result in many
cases. For d+ z − 2 < ∆ < 2, the sum rule reads∫ ∞

0

dω Re
[
σ(ω)− σ(ω)

∣∣
T=g=0

]
= 0 . (6)

If ∆> 2 or ∆< z + d − 2, the integral becomes infinite
making (6) ill-defined. Thus, in contrast to d= 2, most
states in d=3 will not obey (6) since generally z≥1. In
the special case of 1d CFTs, the conditions on ∆ for the
validity of (6) are trivially satisfied. For general d, ∆=2
or z + d − 2 constitute special cases since the rhs of (6)
can be finite and non-zero (see the O(N) model calcula-
tion below). Again, (6) holds in the same regime as the
asymptotic expansion, i.e. for points in the (g, T ) phase
diagram that can be reached from the QC region without
crossing phase transitions. Knowledge about the expan-
sion is needed to ensure that σ(ω) decays sufficiently fast
at large frequencies. The other ingredient is the analyt-
icity of σ in the upper half-plane of complex frequencies
(causality), which allows us to prove the sum rule by
contour integration [26].

O(N) model: We now examine the physics described
above in the context of the interacting QCPs in the O(N)
model in 2d, which have z = 1 and are CFTs. We focus
on 2 cases: N = ∞ (which is solvable), and N = 2
which describes an interacting superfluid-insulator QCP.
These QCPs are described by a relativistic φ4-theory for
an order parameter field φa with N real components [43]:

S = −
∫

d3x

(
1

2
∂µφa∂

µφa + rφaφa +
u

2N
(φaφa)2

)
.

(7)
This action is written in real time. When r is large,
this model yields a gapped phase with unbroken O(N)
symmetry; when r is small, O(N) is spontaneously bro-
ken and the low energy effective theory contains Gold-
stone bosons if N > 1. There are conserved currents
Jµab = φa∂

µφb − φb∂
µφa, and our goal is to compute

the corresponding conductivity. When 1 < d < 3, di-
mensional analysis suggests that this QCP has a relevant
operator φaφa with detuning parameter g ∼ r. This is
qualitatively correct; in [26]we precisely identify O and g
in terms of slightly different variables.

When N = ∞, this model is exactly solvable through
large-N techniques [43]. The resulting QCP has ν=1 and
is thus distinct from the Gaussian fixed point at u= 0.
Let us begin by studying the disordered phase, which oc-
cupies the entire phase diagram except the broken sym-
metry state at T = 0 and g<0. We obtain the following
asymptotic expansion via an explicit computation of the
conductivity [26].

σ(ω) =
1

16
+

4g

iω
− 〈O〉g,T

4Nω2
+ · · · , (8)

where 〈O〉g,T = Nm2, with m(g, T ) being the detuning
and temperature induced mass [26]. Using the previously
derived values σ∞ = 1

16 , ∆ = 2, CJJO = 1
4N and COO =
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FIG. 2. Log-log plot of the asymptotic behavior of σ(iΩn)
at imaginary frequencies, in the disordered phase of the O(2)
model, computed using QMC in the limit T→0. Each set of
colored dots represents a different detuning g. m∝ gν is the
single particle gap. The line is the field theory prediction (3)
at large Ωn, with ν = 0.67.

−16N [11], we find exact agreement with (4). Now, the
g-linear term, although purely imaginary, alters the sum
rule Eq. (6) from its g = 0 form because we have the
special situation ∆ = 2. Indeed, we find that the rhs
of Eq. (6) becomes finite, −2πg, which is independent of
temperature, and changes sign across g=0, see [26].

The conductivity in the ordered phase at N=∞, which
occurs when T = 0 and g < 0, is qualitatively distinct.
When the condensate is along the 1-direction 〈φ1〉 6= 0,
the asymptotic conductivity for Jµ12 reads

σ(ω) =
1

16
+

64

3π2

|g|
iω

ln
ω

i|g| + O
( 1

ω

)
. (9)

We find disagreement with (3), which can be under-
stood as follows: conformal perturbation theory was
based around the convergence of the g-expansion of
〈JJe−ig

∫
O〉QCP. When g<0, this expansion can lead to

IR divergences associated with the instability of the sym-
metric vacuum: φa has obtained an expectation value in
the true vacuum. At N =∞, logarithmic corrections to
σ are a consequence of the coupling to Goldstone bosons,
as we show in [26]. Deviations from Eq. (3) hence fol-
low from the superfluid instability of the symmetric vac-
uum when g<0. We also note that the new logarithmic
enhancement in (9) makes the sum rule (6) ill-defined
because the integral diverges. Further, the logarithmic
contribution in Eq. (9) is present when 2<d< 3, for all
temperatures at which long range order exists, with a
proportionality coefficient related to the superfluid den-
sity [26].

When N = 2, the model Eq. (7) describes a strongly
interacting superfluid-insulator QCP, where quasiparticle
excitations have been destroyed by fluctuations. We an-
alyze its imaginary time conductivity numerically using
large-scale lattice quantum Monte Carlo (QMC) simu-
lations. We work with the action Eq. (7) in Euclidean
spacetime (devoid of the sign problem), discretized on a
512 × 512 × 512 cubic lattice. Details of the numerical

methods are in [26]. Fig. 2 shows the universal part of
the imaginary frequency conductivity in the disordered
phase at different values of the detuning, near the QCP.
We plot the conductivity relative to its groundstate value
σ∞ as a function of the frequency rescaled by the single-
particle gap m ∝ gν . In order to do so, we must subtract
off a non-universal lattice correction to σ, and employ
σ∞ = 0.355(5), found with recent conformal bootstrap
calculations [44] along with numerical simulations [8–12].
The resulting data collapses to a single universal curve.
The large-ω field theory prediction (solid line) for the
subleading term, which scales as c1ω

−1/ν , with ν = 0.67,
is also shown. At N = 2, in contrast to the N = ∞
case Eq. (8), the next subleading term ∝ c2ω1/ν−3 comes
with nearly the same exponent, so that in practice we
combine both the c1,2 terms into a single one. By look-
ing at the high frequency limit, we see that c1 is negative,
in agreement with our result at N =∞, Eq. (8). The nu-
merical data is also consistent with our predicted scaling
σ − σ∞ ∝ ω−1/ν , but due to the need to subtract off a
large background conductivity to extract c1 and ν, we
presently cannot perform a more quantitative analysis.

In the superfluid phase, both the numerical and field
theory analyses become complicated by the presence of
the broken symmetry and the associated strongly coupled
Goldstone boson(s) (at finite T , the order becomes alge-
braic). In order to analytically understand the asymp-
totic behavior of σ(ω), and the associated sum rule (6),
one would need methods beyond what we have discussed
so far. It will be interesting to see whether the result will
be similar to the N =∞ case, Eq. (9), with the associ-
ated breakdown of the sum rule. We leave this important
question for the future.

Outlook: We have determined the large-frequency op-
tical conductivity near a QCP for a wide class of theo-
ries, Eq. (3), in general dimensions. Our analysis incor-
porates non-thermal detuning and temperature, and thus
extends beyond the QC fan which facilitates comparison
with experiments. This has led to a unified understand-
ing of sum rules in the phase diagram near such QCPs.
Interestingly, we have found that in certain superfluid
phases, interacting Goldstone bosons can qualitatively
change the results. It will be of interest to analyze such
effects more broadly. Our findings can potentially be
tested at QCPs in superconductor-insulator systems or
Josephson junction arrays [2], and in ultra-cold atomic
gases. In the latter case, the physics of the superfluid-
insulator QCP has already been realized [15–17], and pro-
posals for measuring the optical conductivity exist, e.g.
by periodic phase-modulation of the optical lattice [45].
Finally, although we focused on the optical conductivity,
our general techniques apply to other correlation func-
tions.
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