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We construct a numerical solution of the small-x evolution equations recently derived in [1] for
the (anti)quark helicity TMDs and PDFs as well as the g1 structure function. We focus on the
case of large Nc where one finds a closed set of equations. Employing the extracted intercept, we
are able to predict directly from theory the behavior of the quark helicity PDFs at small x, which
should have important phenomenological consequences. We also give an estimate of how much of
the proton’s spin may be at small x and what impact this has on the spin puzzle.
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Introduction For many decades, it has been known
that the proton is a complex object composed of quarks,
antiquarks, and gluons (collectively called partons). The
properties of the proton are thus emergent phenomena
arising from the dynamics of partons. For example, the
spin of the proton (= 1/2 in units of ~), which is one
of its most fundamental quantum numbers, should be a
sum of the spin and orbital angular momentum (OAM)
of its partons. This can be expressed in terms of helicity
sum rules [2–5], like that of Jaffe and Manohar [2]

Sq + Lq + SG + LG =
1

2
, (1)

where Sq and SG are the spin of the quarks and gluons,
respectively, while Lq and LG denote their OAM. The
quantities Sq and SG are defined as the following integrals
over Bjorken-x at a fixed momentum scale Q2,

Sq(Q
2) =

1

2

1∫
0

dx∆Σ(x,Q2) , (2)

SG(Q2) =

1∫
0

dx∆G(x,Q2) , (3)

with

∆Σ(x,Q2) =
[
∆u+ ∆ū+ ∆d+ ∆d̄+ . . .

]
(x,Q2) , (4)

where the helicity parton distribution functions (PDFs)
for a parton of flavor f = u, ū, d, d̄, . . . , G are denoted
by ∆f . These are equal to the number density of partons
with the same helicity as the proton minus the number
density of those with opposite helicity.

In the late 1980s, the community was largely surprised
when the European Muon Collaboration (EMC) mea-
sured Sq to be a significantly smaller fraction of the pro-
ton’s spin than had been naïvely expected [7, 8]. This
result led to the spin puzzle centered around the ques-
tion of how the pieces in Eq. (1) add up to 1/2. To
help pin down another term in this sum, there has been

intense effort over the last decade to measure and ex-
tract SG. Recent experiments show that SG can give a
more substantial fraction of the proton’s spin than once
thought [9, 10]. The current quark and gluon spin val-
ues extracted from the experimental data are Sq(Q2 =
10GeV2) ≈ 0.15 ÷ 0.20 (integrated over 0.001 < x < 1)
and SG(Q2 = 10GeV2) ≈ 0.13 ÷ 0.26 (integrated over
0.05 < x < 1) [11]. One option, then, is that the rest of
the proton’s spin is due to quark and gluon OAM. How-
ever, note that the quoted values for Sq and SG are for
integrals over a truncated range xmin < x < 1 (where
the relevant quantities are constrained by data), while
the formulae in Eqs. (2), (3) involve integrals over the
full range 0 < x < 1. This leaves open the possibility
that there could be significant quark and gluon spin at
small x, which is the scenario we explore in this Letter.

The use of the small-x formalism to analyze quark po-
larization was pioneered decades ago by Kirschner and
Lipatov [15] (see also [16–18]) and later by Bartels, Ermo-
laev, and Ryskin (herein referred to as BER) in the con-
text of the structure function g1(x,Q2) [19, 20]. In partic-
ular, BER resummed double logarithms αs ln2(1/x) using
infrared evolution equations to predict a strong growth in
g1(x,Q2) at small-x, a scenario that would have a major
impact on the spin puzzle. In a recent work, we formu-
lated the problem in a different language, which employs
light-cone Wilson line operators and color dipoles [21–31],
to derive evolution equations relevant for the (collinear
and transverse momentum dependent (TMD)) helicity
PDFs as well as the g1 structure function [1].

In what follows, we solve these helicity evolution equa-
tions numerically (in the limit of a large number of col-
ors Nc) in order to give a direct input from theory on the
small-x behavior of helicity PDFs, which should have im-
portant phenomenological consequences. We extract the
high-energy intercept αh to predict the small-x asymp-
totics of ∆Σ(x,Q2) ∼ (1/x)αh and estimate how much
of the proton’s spin one can expect to find at low x.

The helicity evolution equations As shown in [32], at
small x the quark helicity PDF in the flavor-singlet case
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∆qS(x,Q2) (and, therefore, ∆Σ(x,Q2)) can be written
in terms of the impact-parameter integrated polarized
dipole amplitude G(x2

10, z) as [33]

∆qS(x,Q2) =
Nc
2π3

∑
f

1∫
zi

dz

z

1
zQ2∫
1
z s

dx2
10

x2
10

G(x2
10, z) . (5)

Here x10 = x1 − x0 is the dipole size, z is the fraction of
the probe’s longitudinal momentum carried by the softest
(anti)quark in the dipole, zi = Λ2/s, with Λ an infrared
(IR) momentum cutoff, and s is the center-of-mass en-
ergy squared. The singularity at x10 = 0 is regulated
by requiring that x10 ≡ |x10| > 1/(z s), with 1/(z s) the
shortest distance (squared) allowed in the problem.

To determine G(x2
10, z), we will solve the evolu-

tion equations derived in [1]. They resum powers of
αs ln2(1/x), which is the double-logarithmic approxima-
tion (DLA). Similar to the unpolarized case [21–31], he-
licity evolution equations do not close in general, forming
a closed set only in the large-Nc and large-Nc &Nf limits
(with Nf the number of flavors) [1]. Ignoring leading-
logarithmic (LLA) saturation corrections [34], the large-
Nc DLA evolution of G(x2

10, z) is governed by Eq. (83a)
in [1] integrated over all impact parameters,

G(x2
10, z)=G(0)(x2

10, z) +
αsNc

2π

z∫
1

x2
10s

dz′

z′

x2
10∫

1
z′s

dx2
21

x2
21

×
[
Γ(x2

10, x
2
21, z

′) + 3G(x2
21, z

′)
]
. (6)

In Eq. (6), one also has the object Γ(x2
10, x

2
21, z

′), called
a “neighbor” dipole amplitude [1]. The neighbor dipole
obeys the (large-Nc, strictly DLA) evolution equation [1]

Γ(x2
10, x

2
21, z

′) = Γ(0)(x2
10, x

2
21, z

′) +
αsNc

2π

z′∫
1

x2
10s

dz′′

z′′
(7)

×

min
{
x2
10,x

2
21

z′
z′′

}∫
1

z′′s

dx2
32

x2
32

[
Γ(x2

10, x
2
32, z

′′) + 3G(x2
32, z

′′)
]
.

Note that in Eqs. (6), (7) we have neglected small differ-
ences in the dipole sizes x2

10 ≈ x2
20 ≈ x2

30. The solution
to the simultaneous equations (6), (7), which we discuss
in the next section, allows us to determine the small-x
behavior of G(x2

10, z), and, hence, of ∆qS(x,Q2) in the
dominant flavor singlet channel.

Numerical solution to the large-Nc evolution equations
We start by defining new coordinates,

η ≡ ln
z

zi
, η′ ≡ ln

z′

zi
, η′′ ≡ ln

z′′

zi
, (8)

s10 ≡ ln
1

x2
10Λ2

, s21 ≡ ln
1

x2
21Λ2

, s32 ≡ ln
1

x2
32Λ2

,

as well as rescaling all η’s and sij ’s,

η →
√

2π

αsNc
η , sij →

√
2π

αsNc
sij . (9)

Using these variables, we write the large-Nc helicity evo-
lution equations (6), (7) as

G(s10, η) = G(0)(s10, η) +

η∫
s10

dη′
η′∫

s10

ds21 (10a)

× [Γ(s10, s21, η
′) + 3G(s21, η

′)]

Γ(s10, s21, η
′) = Γ(0)(s10, s21, η

′) +

η′∫
s10

dη′′ (10b)

×
η′′∫

max{s10,s21+η′′−η′}

ds32 [Γ(s10, s32, η
′′) + 3G(s32, η

′′)] .

Note that the ranges of the s21 and s32 integrations are
restricted to positive values of s21 and s32 as long as
s10 is positive; therefore, we always stay above the IR
cutoff Λ (in momentum space). The initial conditions for
Eqs. (10) are [32, 35]

G(0)(s10, η) = Γ(0)(s10, s21, η)

= α2
sπ

CF

Nc
[CF η − 2(η − s10)] , (11)

with CF = (N2
c − 1)/(2Nc). Since the equations at hand

are linear, and we are mainly interested in the high-
energy intercept, we can scale out α2

sπ CF /Nc.
In order to solve Eqs. (10) [36], we first write down a

discretized version of them

Gij=G
(0)
ij + ∆η∆s

j−1∑
j′=i

j′∑
i′=i

[Γii′j′ + 3Gi′j′ ] , (12a)

Γikj=Γ
(0)
ikj + ∆η∆s

j−1∑
j′=i

j′∑
i′=max{i,k+j′−j}

[Γii′j′ + 3Gi′j′ ] ,

(12b)

where Gij ≡ G(si, ηj), Γijk ≡ Γ(si, sk, ηj), and

∆η =
ηmax
Nη

, ∆s =
smax
Ns

, (13)

with ηmax the maximum η value and Nη the number
of grid steps in the η direction, and likewise for smax,
Ns. The discretized equations (12) are exact in the limit
∆η , ∆s → 0 and ηmax , smax → ∞. To optimize the
numerics, we set ηmax = smax.

With the discretized evolution equations (12) in hand
(along with the initial conditions (11) suitably dis-
cretized), we first choose values for ηmax = smax and
∆η = ∆s. We then systematically go through the η-s
grid in such a way that each Gij (and Γijk) only depends
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FIG. 1. The numerical solution of Eqs. (10) for the polarized
dipole amplitude G plotted as a function of rescaled “rapidity”
η and transverse variable s10.

on G,Γ values that have already been calculated. Thus,
we can determine Gij for each i, j. Our numerical so-
lution (for ηmax = 40, ∆η = 0.05) is plotted in Fig. 1.

We next assume that in the high-energy limit

G(s10, η; ηmax,∆η) ∼ eαh(ηmax,∆η) η+βh(ηmax,∆η) s10 (14)

with some coefficients αh, βh that are functions of
(ηmax,∆η). We then fit ln[G(s01, η; ηmax,∆η)] vs. η for
s10 = 0, using only η ∈ [0.75 ηmax, ηmax]. This allows
us to extract the intercept αh(ηmax,∆η). We perform
this procedure for ηmax = 10, 20, 30, 40, 50, 60, 70 and
∆η ∈ [∆ηmin, 0.1], where ∆ηmin is the smallest value of
∆η, for a given ηmax, that is within our computational
limits. The various intercepts we obtained are shown by
the “data” points in Fig. 2.

As a last step, we extrapolate to the physical point
ηmax→∞, ∆η → 0 by performing a two-dimensional fit
to αh(ηmax,∆η), from which we can extract αh(ηmax →
∞,∆η → 0) ≡ αh (see Fig. 2). In the end, we obtain
αh = 2.31. Therefore, we find

∆qS(x,Q2) ∼ ∆Σ(x,Q2) ∼
(

1

x

)αh

(15)

with

αh = 2.31

√
αsNc

2π
, (16)

where we have reinstated the factor
√
αsNc/2π originally

scaled out by Eq. (9). (We also note that βh ≈ −αh.)
Given that quarks can split into gluons at any step of
evolution, we suspect that the gluon helicity PDF will
have the same small-x intercept (16) but leave a rigorous
calculation for future work. We mention that the uncer-
tainty in αh due to the choice of initial conditions and
the extrapolation to the physical point are both < 1%

FIG. 2. Numerical results for our extraction of αh. The “data”
points are the intercepts we obtained for various (ηmax,∆η).
The dark shaded piece of the plane indicates the region that
is within our computational range, while the light area shows
our extrapolation to the physical point 1/ηmax = ∆η = 0
(large solid dot).

and negligible. This error is strictly from our current
numerical analysis and does not include the impact on
αh that arises from including Nf 6= 0 as well as from
next-to-leading order and running coupling corrections.

We note that the value in Eq. (16) is in disagreement
with the “pure glue” intercept of 3.66

√
αsNc/2π [38] ob-

tained by BER [20] by about 35%. In Fig. 3 we compare
these two intercepts along with that for unpolarized LO
BFKL evolution (all twist and twist-2). Interestingly, the
leading twist approximation to αP − 1 in BFKL evolu-
tion is larger than the exact all-twist intercept by about
30% [39]; it is possible something similar is occurring for
helicity evolution. In Ref. [32], we have explored this
possibility, performed various analytical cross-checks of
our helicity evolution equations, and compared to BER
where possible; we have not found any inconsistencies in
our result.

0.1 0.2 0.3 0.4 0.5
αs

0.5

1.0

1.5

2.0

2.5

3.0
Intercept

αh (BER)

αh (this work)

LO BFKL (twist-2)

LO BFKL (all twist)

FIG. 3. Plot of the intercept vs. αs for helicity evolution (long-
dashed and dot-dashed lines) and unpolarized LO BFKL evo-
lution (solid and short-dashed lines). The long-dashed line
shows the value of αh extracted in this work for large Nc

while the dot-dashed line gives that for the “pure glue” case
of BER [20].
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Impact on the proton spin In order to determine the
quark and gluon spin based on Eqs. (2), (3), one needs
to extract the helicity PDFs. There are several groups
who have performed such analyses, e.g., DSSV [40, 41],
JAM [42, 43], LSS [44–46], NNPDF [47, 48]. While the
focus at small x has been on the behavior of ∆G(x,Q2),
there is actually quite a bit of uncertainty in the size of
∆Σ(x,Q2) in that regime as well.

Let us define the truncated integral

∆Σ[xmin](Q2) ≡
∫ 1

xmin

dx∆Σ(x,Q2) . (17)

One finds for DSSV14 [41] that the central value of the
full integral ∆Σ[0](10 GeV2) is about 40% smaller than
∆Σ[0.001](10 GeV2). The NNPDF14 [48] helicity PDFs
lead to a similar decrease, although, due to the nature
of neural network fits, the uncertainty in this extrapola-
tion is 100%. On the other hand, for JAM16 [43] helicity
PDFs the decrease from the truncated to the full inte-
gral of ∆Σ(x,Q2) seems to be at most a few percent.
The origin of this uncertainty, and more generally the
behavior of ∆Σ(x,Q2) at small x, is mainly due to vary-
ing predictions for the size and shape of the sea helicity
PDFs, in particular ∆s(x,Q2) [40–43, 47–49]. So far, the
only constraint on ∆s(x,Q2), and how it evolves at small
x, comes from the weak neutron and hyperon decay con-
stants. Therefore, there is a definite need for direct input
from theory on the small-x intercept of ∆Σ(x,Q2): this
is what we have provided in this Letter.

We now will attempt to quantify how the small-x be-
havior of ∆Σ(x,Q2) derived here affects the integral in
Eq. (2). We take a simple approach and leave a more
rigorous phenomenological study for future work. First,
we attach a curve ∆Σ̃(x,Q2) = N x−αh (with αh given
in (16)) to the DSSV14 result for ∆Σ(x,Q2) at a partic-
ular small-x point x0. Next, we fix the normalization N
by requiring ∆Σ̃(x0, Q

2) = ∆Σ(x0, Q
2). Finally, we cal-

culate the truncated integral (17) of the modified quark
helicity PDF

∆Σmod(x,Q
2) ≡ θ(x− x0) ∆Σ(x,Q2)

+ θ(x0 − x) ∆Σ̃(x,Q2) (18)

for different x0 values. The results are shown in Fig. 4 for
Q2 = 10 GeV2 and αs ≈ 0.25, in which case αh ≈ 0.80.

We see that the small-x evolution of ∆Σ(x,Q2) could
offer a moderate to significant enhancement to the quark
spin, depending on where in x the effects set in and on
the parameterization of the helicity PDFs at higher x.
Thus, it will be important to incorporate the results of
this work, and more generally the small-x helicity evo-
lution equations discussed here, into future extractions
of helicity PDFs that include data at smaller x from an
Electron-Ion Collider.

Conclusion In this Letter we have numerically solved
the small-x helicity evolution equations of Ref. [1] in
the large-Nc limit. We found an intercept of αh =

10-8 10-5 10-2
xmin

0.1

0.2

0.3

0.4

0.5

ΔΣ [xmin](Q2)

This work (x0=0.001)

This work (x0=0.01)

This work (x0=0.03)

DSSV14

FIG. 4. Plot of ∆Σ[xmin](Q2) vs. xmin at Q2 = 10 GeV2.
The solid curve is from DSSV14 [41]. The dot-dashed, long-
dashed, and short-dashed curves are from various small-x
modifications of ∆Σ(x,Q2) at x0 = 0.03, 0.01, 0.001, respec-
tively, using our helicity intercept (see the text for details).

2.31
√
αsNc/2π, which, from Eq. (15), is a direct in-

put from theory on the behavior of ∆Σ(x,Q2) at small
x. Although a more rigorous phenomenological study
is needed, we demonstrated in a simple approach that
such an intercept could offer a moderate to significant en-
hancement of the quark contribution to the proton spin.
Therefore, it appears imperative to include the effects
of the small-x helicity evolution discussed here in future
fits of helicity PDFs, especially those to be obtained at
an Electron-Ion Collider.
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