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Binary systems of two compact objects circularize and spiral toward each other via the emission
of gravitational waves. The coupling of the spins of each object with the orbital angular momentum
causes the orbital plane to precess, which leads to modulation of the gravitational wave signal. Until
now, generating frequency-domain waveforms for fully precessing systems for use in gravitational
wave data analysis meant numerically integrating the equations of motion, then Fourier transforming
the result, which is very computationally intensive for systems that complete hundreds or thousands
of cycles in the sensitive band of a detector. Previously, analytic solutions were only available for
certain special cases or for simplified models. Here we describe the construction of closed-form,
frequency-domain waveforms for fully-precessing, quasi-circular binary inspirals.

The recent detection of gravitational waves from a bi-
nary black hole merger by LIGO [1], with a signal that
is in accord with the predictions of Einstein’s theory [2–
4], is a triumph of engineering and theoretical physics.
The GW150914 signal provided our first observational
encounter with strong field, dynamical gravity, and a
chance to compare predictions with data. Efforts to
model the orbital evolution of such binary systems and
their gravitational wave emission have been ongoing for
a century [5]. The non-linearity of Einstein’s field equa-
tions greatly complicates the solution to the gravitational
two-body problem, with the fixed elliptical orbits of New-
ton’s theory replaced by orbits that tilt and precess as the
bodies spiral inward and eventually merge.

While complete solutions to the two-body problem in
general relativity are only known numerically, accurate
approximations are available for describing the early in-
spiral where the orbital velocity, v, is small compared
to the speed of light. These post-Newtonian (PN) equa-
tions of motion are known completely to O(v6) and par-
tially to O(v7) [5]. The effective-one-body (EOB) for-
malism [6], along with calibration against solutions from
numerical relativity [7–12], have been able to extend the
analytic description through merger and ringdown for bi-
nary black holes. Solving the PN equations of motion
analytically is challenging, especially when the orbits are
eccentric or the bodies are spinning. While solving the
PN equations numerically is far less intensive than solv-
ing the full Einstein equations, it can add days or weeks
to Bayesian parameter estimation studies [13, 14]. More-
over, since most analyses are performed in the frequency
domain, we seek closed form solutions that can be com-
puted directly in frequency. For non-precessing systems
this can be done using the stationary phase approxima-
tion, but this approximation fails for precessing systems.

Closed-form, analytic waveform models for spin-
precessing systems currently exist for several special
cases. The first are for systems where only one object

is spinning [15]. The ensuing motion is simple preces-
sion and the resulting waveform is ideal for black hole -
neutron star (BHNS) systems [16]. Related to these are
waveforms described by effective spin parameters that
provide good matches to fully precessing waveforms [17].
The effective spin approach has been used to produce
approximate analytic waveforms describing the full in-
spiral, merger and ringdown of spinning black hole bi-
naries [18, 19]. Analytic solutions have also been found
for nearly aligned [20] and slowly spinning [21] systems.
The latter are accurate representations of neutron star
- neutron star (NSNS) inspirals, both for detection and
parameter estimation [22–24].

Here we describe the construction of accurate, closed-
form, frequency-domain waveforms for fully-precessing,
quasi-circular PN inspirals. The solution utilizes three
main elements: the recently discovered reduction to
quadratures for the conservative precessional dynam-
ics [25]; multiple scale analysis (MSA) to exploit the
natural separation of time scales of the PN dynamics;
and the shifted uniform asymptotic (SUA) method for
performing Fourier transforms of waveforms with caus-
tics [26] . For most systems, the waveforms accurately
match those found by numerically evolving the equa-
tions of motion and Fourier transforming the gravita-
tional wave signal. The minority that fail can be caught
in advance and computed numerically.

The PN expansion naturally introduces a separation
of time-scales: Newtonian dynamics at O(v0), the first
relativistic effects such as periastron precession at O(v2),
spin-orbit coupling atO(v3), spin-spin coupling atO(v4),
orbital decay at order O(v5), and so on. Ignoring dissi-
pation, the precession equations for circular orbits can
be orbit averaged to yield a closed set of 9 coupled, first-
order ordinary differential equations for the spin angular
momenta of the two bodies S1, S2 and the orbital an-
gular momentum L. These equations admit 7 conserved
quantities, {S1, S2, L,J , ξ}, where J = L + S1 + S2 is
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the total angular momentum, S1, S2 and L are the mag-
nitudes of the angular momenta 3-vectors, and ξ is the
mass weighted effective spin

ξ ≡ (1 + q)S1 · L̂ + (1 + q−1)S2 · L̂, (1)

where q = m2/m1 is the mass ratio. Kesden et al [25]
showed that by working in a non-inertial, co-precessing
frame of reference, the motion could be reduced to
quadratures in terms of the squared spin magnitude
S2 = (S1 + S2)2:(

dS2

dt

)2

= −A2
(
S6 +BS4 + CS2 +D

)
. (2)

where the constants {A,B,C,D} are given in terms of
the seven conserved quantities. Rather than integrate
this equation numerically [25], we were able to find a
closed form solution in terms of Jacobi Elliptic functions:

S2 = S2
+ + (S2

− − S2
+) sn2(ψ,m) (3)

where sn is the sine-like Jacobi Elliptic function with
modulus m = (S2

+ − S2
−)/(S2

+ − S2
3) and phase ψ =

(A/2)
√
S2

+ − S2
3 t, where {S2

+, S
2
−, S

2
3} are the roots of

the cubic that appears on the right hand side of Eq. (2).
The solution is completed by solving for the precession
angle φz between L⊥ = L− (Ĵ ·L)Ĵ and the x̂ direction
in a coordinate system where Ĵ defines the ẑ direction
and L⊥ at some reference frequency defines the x̂ direc-
tion. The rate of precession Ωz = φ̇z is given by

Ωz
J

= a+
c0 + c2 sn2(ψ,m) + c4 sn4(ψ,m)

d0 + d2 sn2(ψ,m) + d4 sn4(ψ,m)
, (4)

where the constants {a, c0, c2, c4, d0, d2, d4} are given in
terms of the seven constants of the motion and the orbital
velocity. This equation can be integrated to give φz in
terms of elliptic integrals. The remaining angles needed
to specify S1, S2 and L are given in terms of S(t) and the
constants of the motion. This completes the construction
of a closed-form, analytic solution to the conservative
dynamics.

The emission of gravitational radiation causes the sys-
tem to lose energy and angular momentum. Here we can
use the separation between the precession timescale Tpr ≡
|S1|/|Ṡ1| ∼ v−5 and the radiation-reaction timescale
Trr ≡ v/v̇ ∼ v−8 to develop a MSA solution that incor-
porates dissipation. For most variables we find that the
leading-order term in the MSA is sufficient. Additional
accuracy could be achieved by continuing to higher or-
der in the expansion. Of the original seven constants
of motion, the spin magnitudes {S1, S2, ξ} remain con-
stant under radiation reaction. While the magnitude of
the total angular momentum J changes as L decays, the
direction Ĵ remains almost constant. This can be es-
tablished by precession-averaging and PN-expanding the

evolution equation
˙̂
J = L̇L̂/J − J̇ Ĵ/L to show that Ĵz

is constant to O(v2), while Ĵx,y oscillate but exhibit no

secular growth at O(v2). Since the wobble in Ĵ is very
small, we are able to neglect this variation and continue
to use Ĵ to define our coordinate system. This preserves
the geometrical framework used to solve the spin preces-
sion equations.

The orbital angular momentum depends on the orbital
velocity as L = (m1 + m2)η/v where η = m1m2/(m1 +
m2)2 is the symmetric mass ratio. Precession averaging
and PN expanding the evolution equation for J yields
J2 = L2 + 2c1/v + c2 + O(v), where c1 and c2 are con-
stants that are set by the initial conditions at some refer-
ence frequency. The evolution of L and J causes the
roots {S2

+, S
2
−, S

2
3} to evolve on the radiation-reaction

timescale: S2
± = S±,0 + O (v) and S2

3 = O
(
v−2

)
. The

MSA solution for S2 follows from adiabatically promot-
ing the constants in Eq. (3) to functions of time. To
leading order, the amplitude of the oscillations in S2 are
constant, while the modulus grows as m ∼ v2, so that
the oscillations become increasingly anharmonic as the
masses spiral towards each other. The phase ψ can be
PN expanded and integrated: ψ = ψ0−3g0(m1−m2)(1+
ψ1v + ψ2v

2 + . . . )/(4 v3) where {ψ0, g0, ψ1, ψ2} are con-
stants that depend on the masses, spins and initial con-
ditions. Comparison with the numerical solution shows
that the leading-order MSA solution for S2 is very ac-
curate, so there is no need to continue to higher orders
in the expansion. Finding a solution for φz to complete
the derivation for precessional motion with dissipation
turns out to be the most challenging step. To compute
the MSA we introduce two time variables, the precession
time tpr and the radiation-reaction time trr. The leading-
order term in the MSA is found by precession averaging
Ωz and PN integrating:

φz,−1 =

∫
〈Ωz〉pr(trr) dtrr =

∫
〈Ωz〉pr

dv

v̇
. (5)

While this leading-order term captures the overall secular
evolution of φz, we found that the agreement between the
numerical and analytic solutions could be improved by
including the second-order term in the MSA expansion,

φz,0 =

∫
Ωz(tpr, trr) dtpr −

∫
〈Ωz〉pr(trr) dtpr , (6)

which describes small oscillations in φz on the precession
time scale.

Figure 1 compares the analytic and numerical solu-
tions for Ĵz, J , S and φz for a strongly precessing
black hole - black hole (BHBH) binary with masses
(m1,m2) = (10, 7)M� and spin magnitudes (S1, S2) =
(0.6m2

1, 0.7m
2
2). The angles between the spins and an-

gular momentum at a reference frequency of 20 Hz are
L,S = 78◦, L,S1 = 120◦ and L,S2 = 36◦. Overall the
agreement is excellent. The largest discrepancy occurs
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FIG. 1. A comparison of the analytic (red, dashed lines) and
numerical (black, solid lines) solutions to the PN equations of
motion for a strongly precessing black hole binary. Clockwise
from the upper left we have the frame orientation Ĵz, the
magnitude of the total angular momentum J , the precession
angle φz and the magnitude of the total spin S. The largest
discrepancy between the solutions occurs for S, and can be
traced to the approximate phasing ψ. However, as shown in
Fig. 2, the impact on the waveform is minor.

in the spin magnitude, and is due to the difference be-
tween the numerical and analytic solution for the phase
ψ. It is possible to improve the agreement by continuing
the PN expansion of ψ to higher order, but this is un-
necessary since the dephasing in S has little impact on
the waveforms. Note that the waveform was truncated
at r = 6(m1 + m2), and does not extend to cover the
merger and ringdown portions of the full signal.

With the analytic solution for the orbital motion in
hand, the next step is to produce the gravitational wave-
forms in the frequency domain using the SUA transform.
The gravitational wave signal emitted by a binary system
in General Relativity as observed in an interferometric
detector is h(t) = F+h+ + F×h×, where (F+, F×) are
the antenna pattern functions and (h+, h×) are the two
polarization states of the gravitational wave signal. The
polarization states for a source located in the N̂ direc-
tion can be decomposed into a spin-weighted spherical
harmonic basis [27]

h+ − ih× =
∑
l≥2

l∑
m=−l

Hlm(θs, φs)e
−imΦ, (7)

where Φ = φorb − 3v3(2 − ηv2) ln v , φorb is the orbital
phase, (θs, φs) are the spherical angles of N̂ in a frame
where Ĵ is along the z-axis and

Hlm = hlm
l∑

m′=−l

Dl
m′,m(φz, θL, ζ)−2Ylm′(θs, φs), (8)

where the amplitudes hlm can be found in [5], Dl
m,m′

are the Wigner D-matrices, sYlm are the spin-weighted

spherical harmonics, the angles θL and φz are the spheri-
cal angles of L̂ in the same frame as θs and φs are defined,
and ζ satisfies ζ̇ = φ̇z cos θL. In order to solve for ζ we
employ the same MSA techniques as for φz.

To compute the Fourier transform of h we use the SUA
method devised in [26] and write

h̃(f) =
√

2π
∑
m≥1

Tme
i(2πftm−mΦ−π/4)

×
∑
l≥2

kmax∑
k=−kmax

ak,kmax

2− δk,0
Hlm(tm + kTm), (9)

where tm and Tm are defined implicitly by 2πf =
mΦ̇(tm), Tm = (mΦ̈(tm))−1/2, and

Hlm =
1

2
(F+ + iF×)Hlm +

1

2
(F+ − iF×)Hl,−m (10)

with the constants ak,kmax satisfying the linear system

(−i)p
2pp!

=

kmax∑
k=0

ak,kmax

k2p

(2p)!
, (11)

for p ∈ {0, . . . , kmax}. For a static detector, Hlm de-
pends on frequency only through φz, θL, and ζ. As shown
in Ref. [26], setting kmax = 3 is sufficient to accurately
match the numerical Fourier transform.
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FIG. 2. A comparison of the analytic and numerical so-
lutions for the Fourier amplitude (upper panel) and Fourier
phase (lower panel) of the observed gravitational wave sig-
nal for a strongly precessing black hole binary. The ampli-
tudes are scaled by a reference amplitude at 20 Hz, |h̃ref | ≡
(20 Hz)7/6|h̃(f = 20)|, and multiplied by f7/6 to account for
the dominant secular evolution.

Figure 2 compares the numerical and analytic solu-
tions for the amplitude and phase of the gravitational
waveform h produced by the system shown in Figure 1,
observed edge-on and located on the detector plane at
the initial reference time. There is good agreement across
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the band, with the dephasing at high frequencies coming
from errors in the PN integrated phase ψ. The discrep-
ancy has little effect on the overlap between the wave-
forms, which we measure in terms of the faithfullness,
defined as

F ≡ max
tc,φc

(h1 | h2)√
(h1 | h1) (h2 | h2)

. (12)

where tc and φc are the merger time and phase, and (a|b)
denotes the usual noise-weighted inner product. Using
the aLIGO design zero-detuning, high-power noise spec-
tral density [28], the faithfulness of the analytic waveform
shown in Figure 2 is F = 0.9997.

We tested the analytic waveforms for a wider range of
signals through a Monte Carlo study that covered NSNS,
NSBH and BHBH binaries. Here we focus on the BHBH
systems since they have the most complicated preces-
sional dynamics, and their inspiral is not described by
existing analytic methods. The Monte Carlo study drew
10,000 systems with masses drawn uniformly in logarithm
between [2.5, 20]M�, and dimensionless spin magnitudes
Si/m

2
i drawn uniformly in [0, 1]. The initial directions of

the unit vectors {L̂, Ŝ1, Ŝ2} and the sky location N̂ were
drawn randomly on the sphere. Figure 3 shows the distri-
bution of the unfaithfulness 1−F for this sample. We de-
mand that the systematic error introduced by waveform
modeling errors are smaller than the statistical errors.
This requires choosing a reference SNR for the systems
of interest, as the statistical errors scale with the SNR,
while the systematic errors are SNR-independent [29]. It
can be shown that the expected value for the faithful-
ness due to statistical errors in the intrinsic parameters
is given by F = 1 − Din/(2 SNR2), where Din are the
number of intrinsic parameters. Choosing a reference
SNR = 25 and using that Din = 8 yields a nominal ac-
curacy threshold of F = 0.994. We found that 10.7% of
BHBH system fell outside this accuracy requirement (for
NSNS binaries the fraction was 0.3%, and for BHNS bina-
ries 1.6%). We found that systems with very low overlaps
F < 0.97 fell into three categories. The first have total
angular moment L and orbital angular momenta S that
pass through near-anti-alignment during the evolution of
the orbit, which leads to a problem with our coordinate
system which is defined by J = L + S and L × J . In
particular, the φz coordinate becomes ill-defined when
S and L are parallel. So long as the alignment is not
perfect, the numerical solution proceeds smoothly, while
the analytic MSA PN expansion of φz has coefficients
in the velocity expansion that diverge. The second cat-
egory of troublesome cases are nearly edge-on systems,
(L ·N ∼ 0), a configuration which maximizes the effects
of precession on the waveforms, and amplifies any small
inaccuracies in the analytic solution. The third category
of bad systems were found to undergo transitional preces-
sion [15]. We found that the overlaps could be improved
in all cases by going to higher order in the MSA and

the PN integration, but to fully solve the problem will
likely require a change of coordinates. In data analysis
applications, the troublesome systems can be caught in
advance and other, slower methods, such as the numeri-
cal SUA [26] can be used to generate the waveforms. By a
change of coordinates, or by some other means, it should
be possible to modify the φz solution so that it can han-
dle spin-orbit anti-alignment and transitional precession.
Extending the analytic solution to higher order will im-
prove the fitting factor for edge-on systems. We leave
these extensions to future work.
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FIG. 3. Cumulative (upper panel) and fractional (lower
panel) distribution of the unfaithfulness, 1−F , of the analytic
waveforms for a sample of 10,000 precessing binary black hole
systems. While the agreement between the numerical and an-
alytic PN waveforms is excellent for the majority of systems,
there exist a small subset that produce unacceptably high mis-
matches above a nominal threshold of F = 0.994 indicated by
the solid vertical line. The dashed vertical line marks the me-
dian unfaithfulness, which corresponds to 1−F = 7.4×10−4.

Summary: We have described the derivation of the first
closed form, frequency-domain waveforms for fully pre-
cessing compact binary inspiral. Complete details will
be provided in a longer follow-up paper. The method
described here can be extended to cover the full inspiral,
merger and ringdown stages of a black hole merger using
EOB or phenomenological waveforms. In particular, our
work allows for the development of fully precessing vari-
ants of the effective-spin “PhenomP” waveforms [18, 19].
The new waveforms are typically much faster to com-
pute than traditional numerical, time-domain implemen-
tations - up to 3 orders of magnitude faster for NS-NS
binaries starting from 10 Hz. The analytic solution also
provides additional physical insight into the dynamics.
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