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We show that placing a quantum system in contact with an environment can enhance non-Fermi-liquid corre-
lations, rather than destroying quantum effects as is typical. The system consists of two quantum dots in series
with two leads; the highly resistive leads couple charge flow through the dots to the electromagnetic environ-
ment, the source of quantum noise. While the charge transport inhibits a quantum phase transition, the quantum
noise reduces charge transport and restores the transition. We find a non-Fermi-liquid intermediate fixed point
for all strengths of the noise. For strong noise, it is similar to the intermediate fixed point of the two-impurity
Kondo model.

Quantum fluctuations and coherence are key distinguishing
ingredients in quantum matter. Two phenomena to which they
give rise, for instance, are quantum phase transitions [1, 2],
changes in the ground state of a system driven by its quan-
tum fluctuations, and quantum noise [3–5], the effect on the
system of quantum fluctuations in its environment, for no sys-
tem is truly isolated. Understanding the intersection of these
two topics—the effects of quantum noise on quantum phase
transitions—is important for understanding quantum matter.
It is natural to suppose that decoherence produced by the noise
will suppress quantum effects, and in particular inhibit or de-
stroy a quantum critical state. Indeed, a variety of calculations
demonstrate this in both equilibrium [3, 4, 6–12] and non-
equilibrium [13–17] contexts. There are also a few known
cases that do not follow this rule [18–20]. Here, we present
a striking counter-example to the notion that environmental
noise necessarily harms quantum many-body effects: in the
system we study, the addition of (equilibrium) quantum noise
stabilizes a non-Fermi liquid quantum critical state.

We discuss the phase diagram of two quantum dots con-
nected to two leads in the presence of environmental quan-
tum noise. The noiseless model has a quantum phase transi-
tion that is transformed into a crossover by charge transport
across the double dot. We show that quantum fluctuations of
the field associated with the source and drain voltage counter-
act this charge transport. The competition between these two
processes restores the delicate balance of the quantum critical
state. The result is that the quantum phase transition is rescued
from the undesired crossover for any strength of the noise.

Our double quantum dot setup is shown schematically in
Fig. 1: two small dots are in series between two leads, labeled
L (left) or R (right). The leads are resistive, thereby cou-
pling the electrons to an ohmic electromagnetic environment.
Experimentally, small double dots have been studied in sev-
eral materials [21–25], and the effect of the environment on
transport in simpler systems has been recently studied in de-
tail [26–29], including transport through a single quantum dot
[27, 28]. Thus, all the necessary ingredients for an experimen-
tal study of our system are available.

Model for dots and leads—The model has three parts:
leads, dots, and electromagnetic environment. Following stan-
dard procedures, we linearize the spectrum of each lead, no-
tice that a one-dimensional subset of electrons couples to each
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FIG. 1. Schematic of the system: two quantum dots coupled to left
and right leads. JL,R and K refer to the Kondo and exchange cou-
pling strengths, respectively. VLR is the strength of direct charge
transport between the leads. Dissipative modes in the leads are rep-
resented by wiggly arrows.

dot, and represent it using chiral fermions by analytic contin-
uation with open boundary conditions [30]. The resulting lead
Hamiltonian is the sum of four free Dirac fermions,

H0
leads =

∑
α,σ

∫ ∞
−∞

dxψ†α,σ(x)i∂xψα,σ(x), (1)

where α and σ are the lead and spin labels and both the Fermi
velocity and ~ are set to unity.

For the dots, we consider the Coulomb blockade regime
in which charge fluctuations are suppressed and the electron
number is odd [31]. The single-level Anderson model is suit-
able for each dot, as the spacing between levels in the carbon
nanotube dots is large [27, 28]. Each dot, then, has a low en-
ergy spin- 12 degree of freedom, ~Sα. Projecting onto this low-
energy subspace via a second-order Schrieffer-Wolff transfor-
mation produces two Kondo-like terms with couplings JL,R
and a spin-spin anti-ferromagnetic interaction with coupling
K:

Hdots = JL~sL(0) · ~SL + JR~sR(0) · ~SR +K~SL · ~SR, (2)

where ~sα=ψ†α(0)~σ ψα(0) is the spin-density in the lead at the
point connected to the dot. Though none of our results depend
on left-right symmetry, we take JL=JR for simplicity.

Charge transfer between the two leads is key to the physics
of this system [32–37]. The effective hopping between the
leads that arises from the third-order Schrieffer-Wolff trans-
formation of the original Anderson model must be added [37]:

HLR = VLR

[(
ψ†L↑ψR↑ + ψ†R↓ψL↓

)
S−L S

+
R

+
(
ψ†L↑ψR↑ + ψ†L↓ψR↓

)
SzLS

z
R (3)

+
(
ψ†L↑ψR↓ − ψ

†
R↑ψL↓

) (
SzLS

−
R − S−L SzR

)]
+ h.c.,
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where x = 0 for the lead operators [38]. This form is ob-
tained because moving an electron across the dots neces-
sarily involves the dot spins. Much of the physics added
by (3) is obtained from a simpler direct hopping, ĤLR =
V̂LRψ

†
Lσ(0)ψRσ(0) + h.c. [37, 42]. We therefore simplify the

discussion by using ĤLR rather thanHLR when possible [38].
The final ingredient in our system is the “quantum noise.”

Quantum fluctuations of the source and drain voltage require
a quantum description of the tunneling junction [5, 31]. The
standard procedure is to introduce junction charge and phase
fluctuation operators that are conjugate to each other and (bi-
linearly) coupled to modes of the ohmic environment with re-
sistance R. Treating the latter as a collection of harmonic
oscillators with the desired impedance, we write the environ-
ment as a free bosonic field, H0

ϕ=
∫
dx
4π (∂xϕ)

2, which is ex-
cited in a tunneling event through the charge-shift operator
ei
√
2rϕ(0) [5]. Such a shift operator is added to every term in

HLR according to

ψ†LσψRσ → ei
√
2rϕ(0)ψ†LσψRσ, (4)

where r = Re2/h is the dimensionless resistance. The en-
vironment does not modify the second-order exchange cou-
plings Eq. (2) because those virtual processes occur on the
very short time scale of the inverse charging energy [43], typ-
ically smaller than the time scale of the environment. This
model of noisy tunneling has been used previously in work
on a resonant level [44, 45], including in our own work
[27, 28, 46, 47], and for a quantum dot in the Kondo regime
[43]. In summary, the starting point of our discussion is the
Hamiltonian

H = H0
leads +H0

ϕ +Hdots +HLR (r) . (5)

Quantum phase transition or crossover?—First, we
bosonize the chiral fermions describing the leads, Eq. (1),
thereby introducing chiral bosonic fields φα,σ [30, 36, 38].
One can then see that the ultraviolet fixed point, described
by H0

leads + H0
ϕ, is unstable. There are two important energy

scales connected to this instability: the Kondo temperature,
TK , associated with the screening of each dot by its own lead,
and the “crossover temperature,” T ∗<TK [36, 42].

To explain T ∗, we start by considering VLR = 0, yield-
ing the two-impurity Kondo model. For T < TK , there are
two Fermi-liquid phases with a critical coupling that sepa-
rates them [32, 48], denoted by Kc. (i) For K > Kc, the
two dots become maximally entangled in a singlet state—the
local-singlet phase controlled by a fixed point, denoted LSFP,
with a scattering phase shift of 0. (ii) ForK<Kc, each dot be-
comes maximally entangled with its respective lead, forming
two decoupled Kondo singlets—the Kondo phase controlled
by a fixed point, denoted KFP, phase shift of π/2. The fact that
the phase shifts are different implies the existence of an inter-
mediate (unstable) fixed point [48, 49], which we call IFP1

(see Fig. 2).
Inter-lead tunneling, VLR 6= 0, changes the behavior dra-

matically. In the absence of dissipation, r = 0, it is known
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FIG. 2. Stability diagram for different noise strengths r, and the
temperature dependence of the conductance at each fixed point. The
KFP and LSFP are stable for any non-zero r, while the nature of the
IFP changes as a function of r. For r < 1/2, the intermediate state
is controlled by IFP2—the fixed point that evolves from one of the
r = 0 Fermi-liquid fixed points. In contrast, for r > 1/2, IFP1—
which evolves from the two-impurity-Kondo IFP—is relevant. For
r=1/2 a line of fixed points connects IFP1 to IFP2.

that HLR destabilizes IFP1 [34–37, 50], becoming effective
below a scale T ∗. The low-energy physics is described by
Fermi-liquid Hamiltonians with scattering phase shift varying
from δ=0 to π/2 depending on the initial values of the cou-
plings [33, 35, 36, 42]. The finite temperature conductance is
G = G0 sin(2δ)[1−κ(T/T ∗)2], where G0 =2e2/h and κ is
non-universal. Therefore, for T <T ∗, the quantum phase tran-
sition of the two-impurity Kondo model is transformed into a
crossover between the Kondo and local-singlet regimes.

Quantum noise effects—Close to the KFP and LSFP, the
tunneling Hamiltonian in the absence of noise, HLR, is a
marginal operator [35, 36, 42]: without noise, any bilinear
operator that transfers charge between the leads is marginal
at these two fixed points. A key effect of the noise is that
the scaling dimension of such an operator increases, making
it irrelevant. In the tunneling operator HLR, the increase is
caused by the exponential charge-shift operator introduced in
Eq. (4). The line of Fermi-liquid fixed points existing at r=0
is then destroyed. The conductance around the KFP and LSFP
follows from perturbation theory in the tunneling, leading to
G(T ) ∼ T 2r [5, 51].

The new found stability of the Kondo and local-singlet fixed
points with respect to tunneling demands once again the exis-
tence of an intermediate fixed point. We denote this “dissipa-
tive intermediate fixed point” by IFP2, as shown in Fig. 2.

IFP2 occurs for the same value of K as IFP1, namely
K=Kc, as we now show. It is known that the effect of a resis-
tive environment on a bilinear tunneling operator is connected
to the partition noise produced by the tunneling [52, 53]: when
there is no partition noise, the environment is not excited by
the current and so has no effect. This is the case at K =Kc:
the phase shift is δ = π/4, so the zero temperature conduc-
tance is G=2e2/h and the transmission is unity. Thus, there
is no partition noise: from the line of r=0 Fermi-liquid fixed
points, this fixed point survives at non-zero r and is, in fact,
IFP2. We now turn to characterizing both IFP’s in detail.

Effective Hamiltonian at the intermediate fixed points—In
order to derive an effective Hamiltonian at the critical cou-



3

pling, K = Kc, we follow the dissipationless discussion of
J. Gan in Ref. [54]. First, we define new bosonic fields,

φc/s = (φL↑ ± φL↓ + φR↑ ± φR↓) /2,
φcf/sf = (φL↑ ± φL↓ − φR↑ ∓ φR↓) /2, (6)

Physically, φc (φs) represents the total charge (spin) in the
leads, and φcf (φsf ) represents the corresponding difference
between the left and right leads. Next, one applies the unitary
rotation U = e−i(S

z
1+S

z
2 )φs(0), thus dressing the spin states

and making the exchange couplings anisotropic [38]. A key
aspect of the physics at the IFP’s is the degeneracy in the dots
between the two dressed spin states |0〉 ≡ (|↑↑〉+ |↓↓〉)/

√
2

and |1〉 ≡ (|↑↓〉−|↓↑〉)/
√
2 that leads to an effective Kondo

problem with Kondo temperature T̃K [54]. It is convenient to
introduce Majorana operators a and b for this two-dimensional
Hilbert space (the string from the Jordan-Wigner transforma-
tion is incorporated into the lead operators). The end result
[54] is an effective Hamiltonian for K=Kc [38],

HK=Kc =
∑

β={c,s,sf,cf,ϕ}
H0
β + 2iJ̃

Fsf√
πα

sin [φsf (0)] a

+ 2ṼLR
Fcf√
πα

cos
[
φcf (0) +

√
2rϕ(0)

]
b, (7)

where Fsf , Fcf are Klein factors, α is of order the inverse
cutoff, J̃ is the renormalized Kondo coupling, and ṼLR is the
renormalized charge tunneling strength. Explicit expressions
for J̃ and ṼLR are given in the supplemental material [38].

The bosonic fields can be further untangled by perform-
ing a rotation that combines the field representing charge
transfer between the leads, φcf , with the environmental
noise, ϕ: φ̃cf ≡ (φcf +

√
2r ϕ)/

√
1 + 2r and ϕ̃ ≡

(
√
2r φcf − ϕ)/

√
1 + 2r. The symmetries of the model

are explicitly shown by defining six Majorana fermionic
fields [35, 36, 49] with Ramond boundary conditions,
χ1,2
β (0+) = χ1,2

β (0−): χ
(1)
β={c,s,sf}(x) =

Fβ√
πα

sin [φβ(x)]

and χ(2)
β={c,s,sf}(x) =

Fβ√
πα

cos [φβ(x)]. Because the bound-

ary interaction 2iJ̃χ
(1)
sf (0)a has scaling dimension 1/2 (a is

an impurity operator), J̃ flows to strong coupling [35, 36].
χ
(1)
sf then incorporates a and can be expressed as a sim-

ple change of boundary condition from Ramond to Neveu-
Schwarz: χ(1)

sf (0+)=−χ(1)
sf (0−) [49].

The effective IFP Hamiltonian can, thus, be written in terms
of six free Majorana fields—five with Ramond and one with
Neveu-Schwarz boundary condition—one free bosonic field
(ϕ̃), and a boundary sine-Gordon model for φ̃cf :

HIFP =

5∑
j=1

∫
dx

2
χj(x)i∂xχj(x) +

∫
dx

2
χ
(1)
sf (x)i∂xχ

(1)
sf (x)

+

∫
dx

4π
[∂xϕ̃(x)]

2 +

∫
dx

4π
[∂xφ̃cf (x)]

2

+ 2i ṼLR
Fcf√
πα

cos
[√

1 + 2r φ̃cf (0)
]
b. (8)

This Hamiltonian has an inherent SO(5)×U(1) symmetry
from the five Majorana fields and the dressed dissipation field
ϕ̃. With regard to the dot degrees of freedom, while Majorana
mode a is effectively incorporated into the leads, mode b is
coupled to the charge transport. For the two-impurity Kondo
model, ṼLR=0 and b is a decoupled Majorana zero mode.

Dependence of IFP on dissipation—The boundary sine-
Gordon model, which is the last element in Eq. (8), is well
known to have a quantum phase transition [30, 55, 56] as the
parameter in the boundary term varies, in our case r. The
simplest description of this transition is via the scaling equa-
tion, dṼLRd` =

(
1
2 − r

)
ṼLR, which results from noticing that

the scaling dimension of the operator cos[
√
1 + 2r φ̃cf (0)] is

(1 + 2r)/2 [30]. There are three distinct scaling behaviors
depending on the value of r.

For weak dissipation, r < 1/2, ṼLR grows. As in the r=0
case [35, 36], the cosine gets pinned at a particular value. The
fixed point Hamiltonian is obtained by changing the boundary
condition on φ̃cf at x= 0 from Dirichlet [for open boundary
conditions on the fermionic fields in Eq. (1)] to Neumann
[56]. IFP2 is the corresponding fixed point; it develops from
the δ=π/4 Fermi-liquid fixed point [35] of the dissipationless
case.

The leading irrelevant operator at IFP2 is, because of the
change in boundary condition, simply the dual of the relevant
operator at IFP1 that causes ṼLR to grow [4, 30]. Its scaling
dimension is 2/(1+2r)—the inverse of that of the cosine op-
erator above. The temperature dependence of the conductance
is therefore expected to be [38]

G ∼ G0

[
1− γT 2( 1−2r

1+2r )
]

(at IFP2) (9)

with γ a non-universal constant. We see that modification of
the boundary interaction by dissipation introduces a Luttinger-
liquid-like character. In addition to the conductance, the
non-Fermi liquid nature of this fixed point is also manifest
in its residual boundary entropy, which can be shown to be
ln gIFP2 =

1
4 ln (1 + 2r) [38].

The break down of scaling (i.e. when ṼLR becomes
of order one) defines the crossover temperature, TLRnoise ≈
TK

(
Ṽ 0
LR

)2/(1−2r)
, in terms of the initial value of tunnel-

ing from left to right, Ṽ 0
LR [57]. For higher temperatures,

TLRnoise < T < TK , the physics is controlled by the ṼLR = 0

fixed point, IFP1, as ṼLR is initially small. For lower temper-
atures, T <TLRnoise, the physics is controlled by IFP2.

To study the effect of deviations of the antiferromagnetic
coupling K from Kc, we follow the discussion in Refs.
[36, 42] and define the crossover temperature TδK = a(K −
Kc)

2/TK , where a is a dimensionless constant. If TLRnoise <
TδK , the low energy physics will be governed by the KFP
or LSFP. However, for TδK < TLRnoise an experiment would
initially observe a rise in the conductance due to proximity
to IFP2 before the crossover to the Kondo or local-singlet
physics took over (for which G→ 0). Using the remarkable
tunability of quantum dots, access to the regime TδK � TLRnoise
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is possible, in which case the power law approach of the con-
ductance to the quantum limit G0, given above, should be ob-
servable. Indeed, a strong-coupling fixed point with similar
properties has recently been studied experimentally in a sin-
gle dissipative quantum dot [27, 28].

In sharp contrast, for strong dissipation, r > 1/2, ṼLR
shrinks, and the properties of the system are controlled by
IFP1. The boundary condition on the field φ̃cf remains the
Dirichlet condition. The scaling dimension of the boundary
sine-Gordon term implies that the conductance decreases at
low temperature according to [38]

G ∼ T 2r−1 (at IFP1). (10)

The non-Fermi liquid nature of this fixed point is fur-
ther shown by the residual boundary entropy, ln gIFP1

=
1
4 ln[4/(1 + 2r)] [38], and, because the last term in Eq. (8)
flows to zero, the decoupling of the b Majorana in the dots.

IFP1 evolves from the intermediate fixed point of the two-
impurity Kondo model (r = 0). Formally, however, IFP1 is
a distinct fixed point—the residual boundary entropy, for in-
stance, depends on r. Nevertheless, for reasonable values
of r ∼ 1/2, this system can emulate the physics of the two-
impurity Kondo model: the SO(7) symmetry manifest in the
Majorana fields [36, 49], for instance, is restored asymptoti-
cally. Any observable not directly related to charge transfer
between the leads, such as the magnetic susceptibility, will
have the same behavior in the two models.

The crossover temperature to the KFP or LSFP, TδK , is
given by the same expression as in the weak noise case. Thus,
for TδK < T < TK the physics of IFP1, bearing strong re-
semblance to that of the two-impurity Kondo model, will be
experimentally accessible.

Finally, the borderline r = 1/2 case is particularly inter-
esting. The cosine in Eq. (8) is exactly marginal [58], cor-
responding to an SU(2) chiral symmetry. Hence, we can re-
place the cosine by the Abelian chiral current ∂xφ̃cf [56]. The
model becomes quadratic and the conductance can be calcu-
lated exactly [30, 51]—G depends on the initial value Ṽ 0

LR

and so is not universal. The exactly marginal operator cre-
ates a line of fixed points connecting IFP1 to IFP2, all with
residual boundary entropy 1

4 ln 2. The line is unstable to devi-
ations from the critical coupling Kc; as in the previous cases,
T < TδK leads to flow toward the KFP or LSFP. Even at
Kc, corrections to the effective Hamiltonian (8) will presum-
ably cause flow away from this line at the lowest temperatures
(which we have not analyzed); however, because their initial
strength is very small, the cross-over temperature T ∗ to see
these effects will be very low. Thus, in a wide range of temper-
atures, T ∗<T <TK , the properties of the line of fixed points
could be seen experimentally, varying V 0

LR to move among
them.

Conclusions—We have presented an example in which the
introduction of a quantum environment reveals a quantum
phase transition previously hidden under a crossover: the
quantum noise has rescued the quantum phase transition.
There are two quantum critical points (Fig. 2): one dominant

for weak dissipation (IFP2, r < 1/2) and the other at strong
dissipation (IFP1, r > 1/2)—this latter fixed point is similar
to that of the two-impurity Kondo model.

A broader view is obtained by connecting to the idea of
“quantum frustration of decoherence” of a qubit [59, 60]: a
quantum system acted upon by two processes that are at cross
purposes may retain more coherence than if acted upon by
just one. The quantum system to be protected here is the
non-Fermi-liquid quantum critical state delicately balanced
between the KFP and LSFP, a striking signature of which is
the decoupled, and so completely coherent, Majorana mode.
Charge transfer between the electron reservoirs associated
with the leads is the first process acting on the system, one
that completely destroys the delicate quantum state and the
coherence of the Majorana mode. Adding the quantum noise
produced by the resistive EM environment impedes the dele-
terious effect of the first process, rendering the coherent Ma-
jorana zero mode again manifest at IFP1. Thus, the quantum
coherence of the delicate many-body state survives due to the
“quantum frustration” of these two processes.

This quantum critical state is highly non-trivial and clearly
unstable toward the KFP and LSFP, but it has experimental
consequences in a wide temperature range. We emphasize
that measurements of the conductance near IFP1 and IFP2

are experimentally feasible at this time—similar amounts of
tuning have been used successfully, for instance, in recent ex-
periments [27, 28]. An experimental study along these lines
would directly contradict the general notion that more noise
leads inevitably to less quantum many-body behavior.
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