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In a network, a local disturbance can propagate and eventually cause substantial part of the sys-
tem to fail, in cascade events that are easy to conceptualize but extraordinarily difficult to predict.
Here, we develop a statistical framework that can predict cascade size distributions by incorporating
two ingredients only: the vulnerability of individual components and the co-susceptibility of groups
of components (i.e., their tendency to fail together). Using cascades in power grids as a represen-
tative example, we show that correlations between component failures define structured and often
surprisingly large groups of co-susceptible components. Aside from their implications for blackout
studies, these results provide insights and a new modeling framework for understanding cascades in
financial systems, food webs, and complex networks in general.

The stability of complex networks is largely determined
by their ability to operate close to equilibrium—a condi-
tion that can be compromised by relatively small pertur-
bations that can lead to large cascades of failures. Cas-
cades are responsible for a range of network phenomena,
from power blackouts [1] and air traffic delay propaga-
tion [2] to secondary species extinctions [3, 4] and large
social riots [5, 6]. Evident in numerous previous modeling
efforts [3–12] is that dependence between components is
the building block of these self-amplifying processes and
can lead to correlations among eventual failures in a cas-
cade.

A central metric characterizing a cascade is its size.
While the suitability of a size measure depends on the
context and purpose, a convenient measure is the num-
ber of network components (nodes or links) participat-
ing in the cascade (e.g., power lines failing, airplanes de-
layed, species extinct). Since there are many known and
unknown factors that can affect the details of cascade
dynamics, the main focus in the literature has been on
characterizing the statistics of cascade sizes rather than
the size of individual events. This leads to a fundamen-
tal question: what determines the distribution of cascade
sizes?

In this Letter, we show that cascading failures (and
hence their size distributions) are often determined pri-
marily by two key properties associated with failures of
the system components: the vulnerability, or the failure
probability of each component, and the co-susceptibility,
or the tendency of a group of components to fail together.
The latter is intimately related to pairwise correlations
between failures, as we will see below. We provide a con-
crete algorithm for identifying groups of co-susceptible
components for any given network. We demonstrate this
using the representative example of cascades of overload
failures in power grids (Fig. 1). Based on our findings, we
develop the co-susceptibility model—a statistical model-
ing framework capable of accurately predicting the dis-
tribution of cascade sizes, depending solely on the vul-
nerability and co-susceptibility of component failures.

We consider a system of n components subject to cas-

(a) (b) 1.0

0.8

0.6

0.4

0.2

0.0

C
o
rr
e
la
ti
o
n

FIG. 1. Example of co-susceptibility of cascading failures in
a power grid. (a) Color-coded network of positive correla-
tions between failures of transmission lines (blue dots) in the
Texas network. In the gray background network, the nodes
represent (all) transmission lines, while each link represents
a direct physical connection through a common substation.
(b) Network in (a) after a correlation-based repositioning of
the nodes.

cading failures, in which a set of initial component fail-
ures can induce a sequence of failures in other compo-
nents. Here we assume that the initial failures and the
propagation of failures can be modeled as a stochastic
and deterministic processes, respectively (although the
framework also applies if the propagation or both are
stochastic). Thus, the cascade size N , defined here as
the total number of components that fail after the initial
failures, is a random variable that can be expressed as

N =

n∑
`=1

F`, (1)

where F` is a binary random variable representing the
failure status of component ` (i.e., F` = 1 if component
` fails during the cascade, and F` = 0 otherwise). While
the n components may be connected by physical links,
a component may fail as the cascade propagates even if
none of its immediate neighbors have failed [6, 13, 14].
For example, in the case of cascading failures of trans-
mission lines in a power grid, the failure of one line can
cause reconfiguration of power flows across the network
that leads to overloading and subsequent failure of other
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lines away from the previous failures [14, 15].

A concrete example network we analyze throughout
this Letter using the general setup above is the Texas
power grid, for which we have 24 snapshots, representing
on- and off-peak power demand in each season of three
consecutive years. Each snapshot comprises the topol-
ogy of the transmission grid, the capacity threshold of
each line, the power demand of each load node, and the
power supply of each generator node (extracted from the
data reported to FERC [16]). For each snapshot we use
a physical cascade model to generate K = 5,000 cas-
cade events and compute the size of each event N . In
this model (which is a variant of that in Ref. [15] with
the power re-balancing scheme from Ref. [17]), an ini-
tial perturbation to the system (under a given condition)
is modeled by the removal of a set of randomly selected
lines. A cascade following the initial failures is then mod-
eled as an iterative process. In each step, power flow is
redistributed according to the Kirchhoff’s law and might
therefore cause some lines to be overloaded and removed
(i.e., to fail) due to overheating. The temperature of the
transmission lines is described by a continuous evolution
model and the overheating threshold for line removal is
determined by the capacity of the line [15]. When a fail-
ure causes part of the grid to be disconnected, we re-
balance power supply and demand under the constraints
of limited generator capacity [17]. A cascade stops when
no more overloading occurs. This model [18], accounting
for several physical properties of failure propagation, sits
relatively high in the hierarchy of existing power-grid cas-
cade models [19–22], which ranges from the most detailed
engineering models to simplest graphical or stochastic
models. The model has also been validated against his-
torical data [23].

In general, mutual dependence among the variables F`

may be necessary to explain the distribution of the cas-
cade size N . We define the vulnerability p` ≡ 〈F`〉 of
component ` to be the probability that this component
fails in a cascade event (including events with N = 0). If
the random variables F` are uncorrelated (thus have zero
covariance), then N would follow the Poisson’s binomial
distribution [24], with average µ̃ =

∑
` p` and variance

σ̃2 =
∑

` p`(1−p`). However, the actual variance σ2 of N
observed in the cascade events data is significantly larger
than the corresponding value σ̃2 under the no-correlation
assumption for all 24 snapshots of the Texas power grid
(with the relative difference, σ̄2 := (σ2− σ̃2)/σ̃2, ranging
from around 0.18 to nearly 39). Thus, the mutual depen-
dence must contribute to determining the distribution of
N in these examples.

Part of this dependence is captured by the correlation
matrix C, whose elements are the pairwise Pearson cor-
relation coefficients among the failure status variables F`.
When the correlation matrix is estimated from cascade
events data, it has noise due to finite sample size, which
we filter out using the following procedure. First, we

standardize F` by subtracting the average and dividing
it by the standard deviation. According to random ma-
trix theory, the probability density of eigenvalues of the
correlation matrix computed from K samples of T inde-
pendent random variables follow the Marchenko-Pastur
distribution [25], ρ(λ) = K

√
(λ+ − λ)(λ− λ−)/(2πλT ),

where λ± =
√

1±K2/T 2. Since those eigenvalues falling
between λ− and λ+ can be considered as contributions

from the noise, the sample correlation matrix Ĉ can
be decomposed as Ĉ = Ĉ(ran) + Ĉ(sig), where Ĉ(ran)

and Ĉ(sig) are its random and significant parts, which
can be determined from the eigenvalues and the associ-
ated eigenvectors [26]. In the network visualization of

Fig. 1(a), we show the correlation coefficients Ĉ
(sig)
``′ be-

tween components ` and `′ estimated from the cascade
events data for the Texas grid under the 2011 summer
on-peak condition. Note that we compute correlation
only between those components that fails more than once
in the cascade events. As this example illustrates, we
observe no apparent structure in a typical network vi-
sualization of these correlations. However, as shown in
Fig. 1(b), after repositioning of the nodes based on cor-
relation strength, we can often identify clusters of pos-
itively and strongly correlated components—those that
tend to fail together in a cascade.

To more precisely capture this tendency of simulta-
neous failures, we define a notion of co-susceptibility: a
subset of components I = {`1, . . . , `m} is said to be co-
susceptible if

γI ≡
〈NI |NI 6= 0〉 − n̄I

m− n̄I
> γth, (2)

where NI ≡
∑m

j=1 F`j is the number of failures among
the m components, 〈NI |NI 6= 0〉 denotes the average
number of failures among these components given that
at least one of them fails, n̄I ≡

∑m
j=1 p`j/

[
1−

∏m
k=1(1−

p`k)
]
≥ 1 is the value of 〈NI |NI 6= 0〉 if F`1 , . . . , F`m

are independent. Here we set the threshold in Eq. (2)
to be γth = σNI , where σ2

NI
≡
∑m

j=1 p`j (1 − p`j )/
[
1 −∏m

k=1(1−p`k)
]

is the variance of NI given NI 6= 0 for sta-
tistically independent F`1 , . . . , F`m . By definition, the co-
susceptibility measure γI equals zero if F`1 , . . . , F`m are
independent. It satisfies −(n̄I − 1)/(m − n̄I) ≤ γI ≤ 1,
where the (negative) lower bound is achieved if multiple
failures never occurs and the upper bound is achieved if
all m components fail whenever one of them fails. Thus, a
set of co-susceptible components are characterized by sig-
nificantly larger number of simultaneous failures among
these components, relative to the expected number for
statistically independent failures. While γI can be com-
puted for a given set of components, identifying sets of co-
susceptible components in a given network from Eq. (2)
becomes infeasible quickly as n increases due to combi-
natorial explosion.

Here we propose an efficient two-stage algorithm for
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FIG. 2. Two-stage algorithm for identifying sets of co-
susceptible components. In the first stage (a), we partition the
reduced unweighted correlation graph into multiple cliques
{Qi}, and index the cliques in descending order of size. (b)
We find the co-susceptible groups {Ri} by recursively agglom-
erating cliques that have enough connections.

identifying co-susceptible components [18]. The algo-
rithm is based on partitioning and agglomerating the
vertices of the auxiliary graph G0 in which vertices rep-
resent the components that fail more than once in the
cascade events data, and (unweighted) edges represent
the dichotomized correlation between these components.

Here we use Ĉ
(sig)
``′ > 0.4 as the criteria for having an

edge between vertices ` and `′ in G0. As Fig. 2(a) il-
lustrates, G0 is divided into non-overlapping cliques—
subgraphs within which any two vertices are directly
connected—using the following iterative process. In each
step k = 1, 2, . . ., we identify a clique of the largest pos-
sible size (i.e., the number of vertices it contains), de-
note this clique as Qk, remove Qk from the graph Gk−1,
and then denote the remaining graph by Gk. Repeat-
ing this step for each k until Gk is empty, we obtain
a sequence Q1, Q2, . . . , Qm of non-overlapping cliques in
G0, indexed in the order of non-increasing size. In the
second stage, we agglomerate these cliques into groups
R1, R2, . . . , Rm, as illustrated in Fig. 2(b). Initially, we
set Rk = Qk for all k. Then, for each k = 2, 3, . . . ,m,
we either move all the vertices in Rk to the largest group
among R1, · · · , Rk−1 for which at least 80% of all the
possible edges between that group and Rk actually exist,
or we keep Rk unchanged if no group satisfies this crite-
rion. Among the resulting groups, we denote those of size
at least three by R1, R2, . . . , Rm′ , m′ ≤ m. A key advan-
tage of our method over applying community-detection
algorithms [26] to G0 is that the edge density threshold
above can be optimized for the accuracy of cascade size
prediction.

We test the effectiveness of our general algorithm on
the Texas power grid. As Figs. 3(a) and 3(b) show, the

block-diagonal structure of Ĉ(sig) indicating high correla-
tion within each group and low correlation between dif-
ferent groups becomes evident when the components are
reindexed according to the identified groups. We note,
however, that individual component vulnerabilities do
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FIG. 3. Correlations between transmission line failures in the
Texas power grid. (a–d) Estimated correlation matrix Ĉ(sig)

(a, b) and vulnerabilities p` (c, d) under the 2011 summer on-
peak condition. Lines are indexed so that p` is decreasing in
` in (a, c). They are indexed so that the sets of co-susceptible
lines appear as diagonal blocks in (b, d). (e) Sizes of the
groups of co-susceptible transmission lines, indicated by the
widths of individual segments of the red portion of the top
bar (on-peak snapshot) and of the blue portion of the bottom
bar (off-peak snapshot) for each season. The gray portion of
each bar corresponds to groups of less than three lines among
groups Rk. (f) Relative difference σ̄2 between the variance of
the cascade size and its counterpart under the no-correlation
assumption.

not necessarily correlate with the co-susceptibility group
structure [see Fig. 3(d), in comparison with Fig. 3(c)].
We find that the sizes of the groups of co-susceptible com-
ponents vary significantly across the 24 snapshots of the
Texas power grid, as shown in Fig. 3(e). The degree of
co-susceptibility, as measured by the total number of co-
susceptible components, is generally lower under an off-
peak condition than the on-peak counterpart [Fig. 3(e)].
This is consistent with the smaller deviation from the
no-correlation assumption observed in Fig. 3(f), where
this deviation is measured by the relative difference in
the variance, σ̄2 (defined above). Since high correlation
within a group of components implies high probability
that many of them fail simultaneously, the groups iden-
tified by our algorithm tend to have high values of γI .
Indeed, among the 171 co-susceptible groups found in the
24 snapshots, Eq. (2) is satisfied for all groups of size ≥ 6,
as well as for the majority (73%) of all groups.

Given the groups of components generated through
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FIG. 4. Validation of the co-susceptibility model. (a) Cumu-
lative distributions FN (x) and FN (x) of cascade sizes N and
N from the cascade events data and from the co-susceptibility
model, respectively, under the 2011 summer on-peak condi-
tion. Inset: Binned probabilities from the two distributions
plotted against each other. The shaded area indicates the
95% confidence interval. (b) Distance between two distribu-
tions as a function of the total load in megawatts (MW) for
all 24 snapshots.

our algorithm, the co-susceptibility model is defined as
the set of binary random variables F` (different from F`)
following the dichotomized correlated Gaussian distribu-
tion [27, 28] whose marginal probabilities (i.e., the prob-
abilities that F` = 1) equal the estimates of p` from the
cascade events data and whose correlation matrix C is
given by

C``′ =

{
Ĉ

(sig)
``′ if `, `′ ∈ Rk for some k ≤ m′,

0 otherwise.
(3)

We are thus approximating the correlation matrix C by
the block diagonal matrix C, where the blocks correspond
to the sets of co-susceptible components. In terms of the
correlation network, this corresponds to using only those
links within the same group of co-susceptible components
for predicting the distribution of cascade sizes. Since
individual groups are assumed to be uncorrelated, this
can be interpreted as model dimensionality reduction, in
which the dimension reduces from n to the size of the
largest group. We sample F` using the code provided
in Ref. [28]. In this method, the computational time
for sampling scales with the number of variables with
exponent of 3, so factors of 2.0 to 15.2 dimensionality
reduction observed for the Texas power grid correspond
to reduction of computational time by a factor of 8.5 to
more than 3,500.

We now validate the co-susceptibility model for the
Texas grid. We estimate the cumulative distribution
function FN (x) of cascade sizes, N :=

∑
` F`, using 3,000

samples generated from the model. As shown in Fig. 4(a),
this function matches well with the cumulative distribu-
tion function FN (x) of cascades sizes N computed di-
rectly from the cascade events data. This is validated
more quantitatively in the inset; the (binned) probabil-
ity pN (x) that x ≤ N ≤ x+ ∆x for the co-susceptibility
model is plotted against the corresponding probability

pN (x) for the cascade events data, using the bin size
of ∆x = Nmax/20, where Nmax denotes the maximum
cascade size observed in the cascade events data. The
majority of the points lie within the 95% confidence in-
terval for pN (x), computed using pN (x) estimated from
the cascade events data. To validate the co-susceptibility
model across all 24 snapshots, we use the Kolmogorov-
Smirnov (KS) test [29]. Specifically, for each snapshot
we test the hypothesis that the samples of N and the
corresponding samples of N are from the same distribu-
tion. Figure 4(b) shows the measure of distance between
two distributions, supx |FN (x) − FN (x)|, which under-
lies the KS test, as a function of the total amount of
electrical load in the system. We find that the null hy-
pothesis cannot be rejected at the 5% significance level
for most of the cases we consider [21/24 = 87.5%, blue
dots in Fig. 4(b)]; it can be rejected in only three cases
(red triangles, above the threshold distance indicated by
the dashed line), all corresponding to high stress (i.e.,
high load) conditions. We also see that more stressed
systems are associated with larger distances between the
distributions, and higher likelihood of being able to re-
ject the null hypothesis. We believe this is mainly due to
higher-order correlations not captured by p` and C.

The identification of co-susceptibility as a key ingredi-
ent in determining cascade sizes leads to two new ques-
tions: (1) What gives rise to co-susceptibility? (2) How
to identify the co-susceptible groups? While the first
question opens an avenue for future research, the second
question is addressed by the algorithm developed here
(for which we provide a ready-to-use software [18]). The
co-susceptibility model is general and can be used for cas-
cades of any type (of failures, information, or any other
spreadable attribute) for which information is available
on the correlation matrix and the individual “failure”
probabilities. Such information can be empirical, as in
the financial data studied in Ref. [30], or generated from
first-principle models, as in the power grid example used
here. Our approach accounts for correlations (a strength
shared by some other approaches, such as the one based
on branching processes [31]), and does so from the fresh,
network-based perspective of co-susceptibility. Finally,
since co-susceptibility is often a nonlocal effect, our re-
sults suggest that we may need nonlocal strategies for
reducing the risk of cascading failures, which bears im-
plications for future research.
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