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Organisms shape their own environment, which in turn affects their survival. This feedback
becomes especially important for communities containing a large number of species; however, few
existing approaches allow studying this regime, except in simulations. Here, we use methods of
statistical physics to analytically solve a classic ecological model of resource competition introduced
by MacArthur in 1969. We show that the non-intuitive phenomenology of highly diverse ecosystems
includes a phase where the environment constructed by the community becomes fully decoupled
from the outside world.

Understanding the diversity of life forms on our planet
is an age-old question. Recent technological advances
uncovered that most habitats harbor hundreds of coex-
isting “species” (most of which are microbial [1–3]), and
the problem of understanding such communities is cur-
rently at the forefront of medical and environmental sci-
ences [4–6]. One of the key obstacles arises from the fact
that ecological and evolutionary time scales are generally
not separable, giving rise to a coupled “eco-evolutionary
dynamics” [7–9]. The fitness of an organism depends on
its environment, but this environment is not fixed: it in-
cludes all other organisms in the community, is shaped
by their activity and changes on an ecological time scale.
Understanding this feedback has long been recognized as
an important question of community ecology [10].

A convenient example of such ecological feedback ap-
pears in models of resource competition [11]. The sur-
vival of an organism is determined by the availability of
resources in its immediate environment. In quantitative
theories of evolution (population genetics), we typically
think of this environment as being fixed externally, but
in an ecological setting an experimentalist can only set
the conditions faced by the community as a whole, e.g.
the overall influx of resources. The immediate environ-
ment of an individual is affected by the activity of all
other organisms and is not under our direct control. For
example, consider increasing the overall influx of maltose
(a sugar) to a multi-species bacterial culture. This could
lead to an increase of maltose in the medium, opening
the community to invasion by a species that grows well
on this sugar. Alternatively, this could enable existing
maltose-consuming species to expand in population, driv-
ing maltose availability back to the same level, or perhaps
even depleting it further. The relation between the re-
sources supplied to the community and the immediate
environment seen by individual organisms is non-trivial.
Our control extends on the former, but organism sur-
vival and therefore community structure are determined

by the latter.

The mechanisms by which organisms shape their envi-
ronment (niche construction theory [12]) have been the
subject of much research, both at equilibrium (e.g. re-
source competition models [11]) and out of equilibrium
(e.g. in the study of ecological successions [13]). Perhaps
the most progress was achieved in the problem of resource
competition in a well-mixed community at equilibrium,
introduced 50 years ago by MacArthur [14]. However,
the geometric approach developed by Tilman in his clas-
sic work [15] allowed him to analyze only the cases with
N = 1 and N = 2 resources. It is not clear to what
extent the intuition derived from low-dimensional mod-
els applies to the high-dimensional case. Recently, a
simulation-based study of a modestly larger number of
resources (N = 10) exhibited a surprising effect whereby
a community interacting with another community would
exhibit an effective “cohesion” even in the absence of any
cooperative interactions between its members, purely as a
consequence of environmental feedback [16]. The number
of metabolites at play in a complex microbial community
in nature is even larger, of order N ' 100 [17, 18]. It is
an intriguing possibility that the phenomenology of high-
diversity communities could contain qualitatively novel,
non-intuitive regimes. However, few existing approaches
allow studying niche construction or eco-evolutionary dy-
namics for a large number of interacting species, except
in simulations.

The booming field of microbiome research is in a dire
need of a theoretical framework capable of describing
complex communities, and there is a growing awareness
that such a framework could emerge from the statistical
physics of disordered systems [19–21]. In this work, we
show that MacArthur’s classic model of resource com-
petition can be solved analytically in the limit of large
N . We observe a phase transition between two qualita-
tively distinct regimes. In one regime, changes of external
conditions propagate to the immediate environment ex-
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perienced by organisms, as expected. However, in the
other regime, the immediate environment of individuals
becomes a collective property of the community, unaf-
fected by the outside world. This regime, which is specific
to high diversity, documents the emergence of a collective
behavior as a consequence of large dimensionality.

In defining our model, we follow Ref. [16], but allow
for more generality. Consider a multi-species community
in a well-mixed habitat where a single limiting element
X exists in N forms (“resources” i ∈ {1 . . . N}). For
example, this could be carbon-limited growth of bacte-
ria in a medium supplied with N sugars. Let nµ denote
the population size of species µ ∈ {1 . . .S}. Briefly, the
availability hi of each resource i in the immediate envi-
ronment of individuals will determine the dynamics of
nµ. The changes in species abundance will translate into
changes in the total demand for resources, denoted Ti.
This total demand, in turn, will determine the resource
availability hi. This feedback loop is the focus of our
analysis.

A species is characterized by its requirement χµ for the
limiting element X , and the “metabolic strategy” {σµi}
it employs to try and meet this requirement. We think
of σµi as the investment of species µ into harvesting re-
source i (e.g., the expression level of the corresponding
metabolic pathway). Specifically, for given resource avail-
ability {hi}, the population growth rate of species µ is
determined by the resource surplus ∆µ experienced by
its individuals:

dnµ
dt
∝ nµ∆µ with ∆µ =

∑
i

σµi hi − χµ. (1)

The first term is the total harvest of X from all sources,
and the second is the requirement an individual must
meet to survive. The proportionality coefficient is not
important, since we will only be concerned with the equi-
librium state where

dnµ
dt = 0.

Species abundances nµ determine the total resource
demand Ti ≡

∑
µ nµσµi. This demand shapes resource

availability hi. In the simplest model [16], organisms
could be sharing a fixed total influx of resource Ri:
hi(Ti) = Ri/Ti. In his original formulation, MacArthur
considered a more complex scenario of dynamical re-
sources with renewal rate ri and maximal availability Ki;

this would correspond to setting hi(Ti) = Ki

(
1− Ti

ri

)
,

see eq. (3) in Ref. [14]. In the interest of generality, here
we will say only that the availability of resource i is a
decreasing function of this total demand: hi = Hi(Ti),
and allow the functions Hi(·) to remain arbitrary, and
possibly different for each resource.

This model admits a convenient geometric formulation,
where we can think of the metabolic strategies {σµi} as S
vectors in the N -dimensional space of resource availabil-
ity. Each hyperplane ~h·~σµ = χµ separates this space into
two regions (Fig. 1a). Above this hyperplane, a positive

resource surplus allows species µ to multiply. Below this
hyperplane (shaded), resources are insufficient to sup-
port species µ. The intersection of such regions over all
competing strategies {~σµ, χµ} defines the “unsustainable
region” Ω:

Ω =

S⋂
µ=1

{~h | ~h · ~σµ < χµ} (2)

If resource availability ~h is inside Ω, no species can har-
vest enough resources to sustain its population. Out-
side Ω, at least one species can increase its abundance.
Therefore, the equilibrium state can only be located at
the boundary of Ω, which we denote ∂Ω. The dynam-
ics (1) possesses a Lyapunov function, which is convex
and bounded from above, similar to the classic model of
MacArthur of which this is a generalization; see Supple-
mental Material (SM). As a result, the equilibrium state
always exists, is unique and stable, and can be found by
solving a convex optimization problem over the region
∂Ω. At this equilibrium, each species is either extinct
and cannot invade (nµ = 0, ∆µ < 0), or is present and
its resource balance is met (nµ > 0, ∆µ = 0).

Fig. 1b shows an example at N = 2. Here, a com-
munity of two specialists ~σ1 = {1, 0} and ~σ2 = {0, 1},
both with cost χ0, is exposed to a mixed strategy ~σ12 =
{x, 1− x} with a cost slightly below χ0. The species ~σ12
will be able to invade, and depending on resource supply,
may coexist with one of the specialists (but not both).
The equilibrium will harbor one or two species, corre-
sponding to the equilibrium ~h being located either at an
edge or at a vertex of ∂Ω.

The resource depletion rules Hi(·) describe the exter-
nal conditions: how much of each resource is supplied to
the community as a whole. In contrast, ~h describes the
availability of resources in the immediate environment of
individuals, which ultimately dictates which species sur-
vive. Any set of competing strategies {~σµ, χµ} defines
a unique community equilibrium, and so implements a
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FIG. 1. The geometry of resource competition at N = 2.

(a) If resource availability ~h lies above the line ~h·~σµ = χµ, the
species µ will multiply, depleting resources (arrow). (b) Com-
petition between S = 3 species; metabolic strategies indicated
by arrows (two specialists and one mixed strategy). The equi-

librium ~h is always located at the boundary (highlighted) of
the “unsustainable region” Ω; one or two species may coexist.
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mapping from external conditions into the actual envi-
ronment ~h. Our aim is to characterize the properties of
this mapping.

The geometric intuition described above was first de-
veloped by Tilman [15], who exhaustively analyzed the
cases N = 1 and N = 2. In higher dimensions, however,
the enumeration of co-existence regimes for a given set
of strategies, like in Fig. 1b, quickly becomes a combi-
natorially difficult problem. In this work, we therefore
adopt the statistical physics approach, and characterize
the expected properties of a typical community, when the
competing strategies are drawn out of some ensemble.

Specifically, for each species µ, we first pick its strategy
as a random binary vector, where each component σµi is
1 with probability p, and 0 otherwise. The parameter p
allows us to specify the location of a typical competitor
on the specialist-generalist axis. We then draw a random
cost χµ =

(∑
i σµi

)
+ εxµ, where ε is a parameter (the

cost scatter, assumed small), and xµ is a Gaussian ran-
dom variable of zero mean and unit variance. We set the
total number of species to S ≡ αN .

The key simplification that makes the problem
tractable analytically is the independence of ~σµ and xµ:
the strategy and its cost are effectively uncorrelated.
This assumption is strong, but far from unreasonable.
First, it remains a good approximation even if a more
complex cost model is considered (see SM section 6, and
Fig. S3), similar to the random energy model being a
good approximation for low-lying states in other con-
texts, e.g. for the integer partitioning problem [22, 23].
Second, the species competing for the same resources in
real communities differ in evolutionary history, lifestyle,
and physiology. Modeling the cumulative effect of these
differences as a random contribution to the species’ like-
lihood to succeed is arguably a better null model than
claiming that the single factor we explicitly consider (the
species’ metabolic preference) plays the dominant role in
determining its intrinsic performance.

Note that setting hi = 1 satisfies the resource bal-
ance of all species within a quantity of order ε, so this
cost model ensures that neither specialists nor general-
ists have an obvious advantage [16]. To characterize the
fluctuations of resource availability 1− hi, we introduce:

m =
∑
i

(1− hi), q =
∑
i

(1− hi)2. (3)

The resource surplus of a typical species is given by:

〈∆µ〉 =

〈∑
i

hiσµi −
[∑

i

σµi + εxµ

]〉
= −pm (4)

(the angular brackets denote the mean over µ). Negative
for most species, ∆µ should hit zero for the lucky outliers
who survive. We find that the spread of resource surplus
values is given by ψ ≡

√
p(1− p)q + ε2 (see SM). Intu-

itively, this is because species differ in cost (variance ε2),

and their strategy ({σµi} with variance p(1 − p)) picks
out resources with different availability (total squared de-
viation q). For this reason, rather than using q and m
directly, for our order parameters we choose ψ and the
ratio λ ≡ pm

ψ .
Each particular set of competitors constitutes “frozen

disorder”, and the properties of a typical community can
be computed using methods of statistical physics of dis-
ordered systems [24], as detailed in the SM. For simplic-
ity, all the results will be quoted for the simplest supply
model Hi(Ti) = Ri

Ti
where each resource is characterized

by a single parameter: its total supply Ri (see SM for the
general case). Our calculation yields explicit equations
for the order parameters ψ and λ at equilibrium, in the
thermodynamic limit N,S → ∞ at α held constant:

1− αI(λ)

1− αE(λ)
= 1 + (1− p)λ

ψ

ψ2
[
1− αI(λ)

]
= ε2 + p(1− p)δR2

[
1− αE(λ)

]2 (5)

Here δR2 is the variance of resource supply Ri, and

I(λ) ≡
∫∞
λ

(y − λ)2e−
y2

2
dy√
2π

and E(λ) ≡
∫∞
λ
e−

y2

2
dy√
2π

are auxiliary functions that can be expressed in terms of
the error function erf.

The role of ε in our model is to measure how strongly
a species’ fate is influenced by intrinsic, rather than
interaction-dependent (ecological) factors [16]. To study
the equations above, consider first the limit ε → 0,
where the scatter of intrinsic organism costs is negligi-
ble. In this limit, the parameter space separates into two
phases (Fig. 2a). One of these corresponds to the solu-
tion ψ = 1 − αE(λ) = 0 and will be called the S-phase;
the other has ψ 6= 0 and will be called the V-phase. The
critical line (dotted line in Fig. 2a) is described by:

δR2
crit =

1− p
p

λ2

1− αcrit I(λ)
, where λ = E−1 (1/αcrit)

For δR2 = 0 the transition occurs at αcrit = 2, consistent
with the perceptron phase transition [24, 25].

To understand the physical meaning of these phases,
consider first a community consisting of N perfect spe-
cialists with costs χµ ≡ 1. This community constitutes
an example of the S-phase, where the immediate envi-
ronment of individuals is fully “shielded” from exter-
nal conditions: faced with an uneven resource supply,
species’ abundance will adjust to drive resource availabil-
ity to hi = 1 for all i, restoring symmetry. In general,
a restricted set of species (small α) or a strongly het-
erogeneous resource supply (large δR2) will prevent the
community from exactly matching demand to the uneven
supply, and the externally imposed asymmetry between
resources will propagate into the organisms’ actual envi-
ronment ~h (the V-phase, “vulnerable” to external per-
turbations). However, as the community is exposed to
new species (α is increased above the critical value; the
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FIG. 2. (a) The phase transition at ε → 0. In the S-phase,
above a critical α (dotted line), the fluctuations of resource
availability vanish, shown here on log scale to highlight the
transition. (b) The distribution of resource surplus at equilib-
rium. Black, the theoretical prediction; red, simulation data
accumulated over 500 realizations at N = 50, shown for ex-
tinct species only (see SM for details). (c) The number of

surviving species at equilibrium as a function of α at δR2 = 1
(cf. the arrow in panel (a)), for three values of ε. Theoreti-
cal prediction (black); mean over 500 simulations at N = 50
(red); standard error of the mean is too small to be visible.
The deviation at ε = 10−4 is an effect of small N . Dotted line
at critical α; shading labels the two phases.

arrow in Fig. 2a), the community transitions into the

shielded phase where the environment ~h is fully symmet-
ric (m = q = 0) and insensitive to external conditions.

To confirm this interpretation, consider the number
of coexisting species at equilibrium. As we have seen,
geometrically, this number is the co-dimension (N minus
the dimension) of the region of ∂Ω where the equilibrium
is located. Remarkably, this elusive quantity can also be
computed analytically. Specifically, one can compute the
distribution of the resource surplus ∆ of all αN species
at equilibrium (Fig. 2b; see SM):

p(∆) =
1√

2πψ2
e
− (∆+λψ)2

2ψ2 · θ(−∆) + E(λ)δ(∆), (6)

Here θ is the Heaviside function constraining ∆ to be
negative. The delta-shaped peak at ∆ = 0 represents the
fraction of species whose resource demand is met. The
number of survivors is therefore αN E(λ), in excellent
agreement with simulations (Fig. 2c). The S-phase where
αE(λ) = 1 therefore harbors a complete set of exactly
N species. If the perturbation of external conditions is
small, no species will go extinct. Since the vectors hi and
χµ (µ running over N surviving species) are related by a
full-rank matrix σµi, the resource availability at the new
equilibrium will remain exactly the same, confirming our
interpretation of this “shielded” phase.

For a non-zero ε, the strict phase transition is replaced
by a crossover (Fig. 3a). At large ε, community struc-
ture is no longer shaped by interactions between commu-
nity members, but becomes dominated by species who
outperform others in all circumstances, and the environ-
mental feedback studied here becomes irrelevant [16]. For
small ε, however, the distinct features of the “shielded”
and “vulnerable” phases remain clearly recognizable: the
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FIG. 3. (a) At finite ε, the phase transition is replaced by
a crossover. Theoretical curves are overlaid with simulation
datapoints for a range of α (10 instances each). At large
α, we observe ψ → ε, confirming that the fluctuations of hi
become negligible. (b) The qualitative distinction between
phases persists at finite ε. Here, simulation results are shown
for ε = 10−3. A community faces a bimodal supply of N = 50
resources (upper panel). Lower panel shows the equilibrium
availability of resources hi (mean ± standard deviation over
500 instances), for two values of α corresponding to different
phases (highlighted in panel (a)). In the “shielded” S-phase,
the asymmetry of the external supply does not affect resource
availability hi.

fluctuations of resource availability are, respectively, of
order ε or much larger than ε (Fig. 3b).

This result has intriguing implications. Consider a
community facing the strongly uneven resource supply
shown in Fig. 3b (top panel). Define a species’ individual
performance as its growth rate when placed in this envi-
ronment, with no other organisms present. One might ex-
pect this performance metric to be predictive of species’
survival in a community setting: surely, increasing the
supply of maltose to a community should favor organ-
isms that grow well on maltose. In the more intuitive
V-phase, this expectation is indeed correct. However,
in the S-phase the internal environment becomes a col-
lective property governed by the statistical properties of
the species’ pool, rather than by the external conditions
(Fig. 3b; bottom panel). As a result, the performance
measured in external conditions becomes irrelevant: it no
longer predicts whether a species will survive (Fig. S4).

In ecological terms, the model considered here was
purely competitive: increasing the abundance of any
species reduces the growth rates of everyone else, i.e.
there are no “cooperative interactions”. Nevertheless, we
have shown that at high dimension, the parameter space
of this classic resource competition model contains a
strongly collective regime. These conclusions were drawn
in the context of a particular, highly simplified model.
In particular, our analysis ignored spatial structure, as-
sumed deterministic dynamics, and focused on equilib-
rium states only. The non-stationary nature of real com-
munities is famously one of the key factors promoting
and maintaining ecological diversity, and is missed by an
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equilibrium model [26]. Stochasticity and spatial struc-
ture are also tremendously important in most contexts,
especially if evolutionary aspects are included into con-
sideration [27]. Nevertheless, the goal of this work was to
explore specifically the feedback of organisms onto their
environment and identify the implications of large dimen-
sionality. For this purpose, the simplified model adopted
here provides a convenient starting point, and highlights
the promise of applying statistical physics to gain analyti-
cal insight into the non-intuitive phenomenology of large-
dimensional metabolic networks [28] and highly diverse
ecosystems. The mean-field nature of our model allows
us to hope that the techniques of out-of-equilibrium sta-
tistical physics of disordered systems could provide some
insight also into its dynamical behaviour.

In other fields of theoretical biology, e.g. neuroscience
and learning theory, statistical physics has already un-
covered a wealth of phenomena that could never be un-
derstood from cartoons of “which neuron activates which
neuron”. In ecology, we can expect its impact to be
equally dramatic, yet this direction remains underex-
plored; see however recent works [19–21]. An important
novelty of our approach was to focus on function, rather
than composition. Currently, the terms “large-N ecol-
ogy” evoke primarily the investigation of mechanisms of
coexistence, starting from the classic work of R. May [29].
In contrast, here, our main goal was to characterize a
functional consequence of ecological dynamics, namely
the environment a community shapes for itself.
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