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We investigate with experiments and computer simulations the non-equilibrium dynamics of DNA
polymers crossing arrays of entropic barriers in nanofluidic devices in a pressure-driven flow. With
increasing driving pressure, the effective diffusivity of DNA rises and then peaks at a value that
is many times higher than the equilibrium diffusivity. This is an entropic manifestation of “giant
acceleration of diffusion”. The phenomenon is sensitive to the effective energy landscape, thus it
offers a unique probe of entropic barriers in a system driven away from equilibrium.

The term “giant acceleration of diffusion” (GAD)
refers to a non-equilibrium phenomenon that Brownian
particles exhibit in a tilted periodic potential, like the
one in Fig. 1(A) [1, 2]. The particles’ effective diffusiv-
ity peaks at a critical value of the tilt, where it attains
a value that can exceed the diffusivity in a uniform po-
tential, D0, by orders of magnitude. GAD has been ob-
served in such varied systems as trapped particles circling
corrugated optical vortices [3], colloidal spheres moving
across an undulating surface tilted in a gravitational field
[4], and the rotating F1-ATPase protein motor [5]. It is
theoretically predicted that Brownian particles conveyed
across entropic barriers can exhibit GAD [6–8]; however,
this has not been shown experimentally. The entropic
case is remarkable because entropic barriers are not fixed;
they can change or even vanish as the system is driven
away from equilibrium. Here, we report the observation
of GAD in the dynamics of DNA polymers driven across
arrays of entropic barriers in nanofluidic structures.

A polymer’s configurational entropy varies within a
nanofluidic device with an inner topography like the one
in Fig. 1(B, C) [9, 10]. A nanofluidic slit with an array of
depressions called nanopits gives rise to entropic barriers
at the pit edges because more configurations are available
to a polymer inside the relatively deep pits than inside
the shallow slit, and the entropic penalty for entering the
slit is significant when the slit height is smaller than the
polymer’s radius of gyration Rg. DNA can fully explore
the vertical space inside such devices within milliseconds
[11], which is much shorter than its typical dwell time in a
pit. Previous theoretical studies highlighted the entropic
nature of the barriers polymers encounter in similar ge-
ometries [12, 13]. Furthermore, in a pressure-driven flow,
DNA hops from pit to pit with exponentially distributed
dwell times in the pits and a pressure-dependent mobil-
ity; this experimentally observed behavior is consistent
with thermally activated transport across entropic bar-
riers [14, 15]. Previous studies focused on the statistics
[10, 16–22] and mobility [9, 14, 22–24] of DNA in nan-
otopographies and interpreted the results in terms of the
free energy in equilibrium. Here, by contrast, we probe
DNA’s diffusivity and its effective energy landscape as it
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FIG. 1. (A) Sketch of a tilted periodic energy landscape. (B)
Illustration of a nanopit array embedded in a nanoslit, with
DNA hopping from pit-to-pit. (C) Side-view of the nanoflu-
idic geometry indicating h, H, and a. A simulated poly-
mer hops between pits under an applied drive of v = 0.05.
(D) Time-sliced fluorescence images of λ DNA climbing a
column of high-barrier pits (h = 75 nm, H = 124 nm) for
∆p = 400 mbar. (E) DNA trajectories from the same experi-
ment. The dashed line indicates ∆y = vpt (vp = 0.7µm s−1).

is driven away from equilibrium. Our experiments and
dissipative particle dynamics (DPD) simulations reveal
the piconewton forces at play.

We created arrays of nanopits within nanofluidic slits
on fused silica chips, similar to devices described previ-
ously [14, 25]. The square pits had 1.05 ± 0.05µm sides
and were linearly arrayed with periodicity a = 2.0µm.
The depth of a pit relative to the slit controls the height
of the entropic barrier. Accordingly, “high” barriers were
obtained in one device with slit height h = 75 nm and
pit depth H = 124 nm, and a second device with di-
mensions h = 88 nm and H = 79 nm had ‘low’ barri-
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ers. The terms “low” and “high” are relative compar-
isons; in both devices, the barriers are higher than the
thermal energy, kBT , so a pit traps DNA nearly indefi-
nitely without a driving force applied [14]. The slits were
3 mm long and 160µm wide. λ DNA molecules (New
England Biolabs), whose contour length is L = 16.5µm
and Rg = 0.73µm [26], were fluorescently stained with
YOYO-1 at a 10:1 base-pair-to-dye ratio and suspended
in 20 mM Tris-EDTA buffer titrated to pH = 8.0 with
HCl, with 3% β mercaptoethanol added. Molecules were
driven through the devices by a pressure difference ∆p
supplied by an air pump. Individual molecules were im-
aged by epifluorescence microscopy using a 100×, 1.49
NA oil-immersion objective (Nikon) and an EMCCD
camera (Andor iXon). The excitation light was shuttered
with a frequency of 1 Hz and a 50 ms exposure time. Our
experimental methods are described in detail in Ref. [14].

Figure 1(D) shows a molecule moving up a column of
pits. We tracked the DNA center-of-mass position along
the flow direction as a function of time t. Figure 1(E)
shows typical trajectories, y(t). We tested ∆p from 50 to
700 mbar. At each ∆p, we recorded 50 to 80 molecules
crossing the pits; more than 2000 total pit-to-pit hops
were typically observed in order to obtain good estimates
of the mean velocity and the diffusion coefficient. 12
to 20 molecules were also recorded crossing pit-free re-
gions of the slit, where the flow velocity is proportional
to ∆p. The mean DNA velocity in the slit is vs; we used
vs to quantify the driving force rather than ∆p because
manometer readings of the latter were less consistent.

To quantify the DNA diffusivity, we first evaluated
the drift-subtracted mean square displacement (MSD) for
each ensemble of trajectories

MSD = 〈(∆y(τ)− vpτ)2〉, (1)

where ∆y(τ) is a molecule’s y displacement in the time
interval τ , 〈...〉 indicates an ensemble average, and vp is
the mean DNA velocity across the pits. (See Supple-
mental Material [url], which includes Refs. [27, 28], for
details and comparisons with alternative analysis meth-
ods.) The effective diffusivity D is related to MSD by

D ≡ lim
τ→∞

MSD/2τ. (2)

Figures 2(A, B) show the growth of MSD with τ in
devices with low and high barriers, respectively, at four
∆p each. On the log-log plot, MSD increased linearly
with τ with a slope near one. For each ∆p, there was an
upper experimental limit to τ , beyond which MSD rose
sharply. That limit corresponded to the time it took the
fastest molecules to exit the camera’s field of view, which
decreased as ∆p increased. To compare measurements on
an equal basis, we evaluated D using Eq. 2 with τ = 2 s.
We verified that velocity autocorrelations are negligible
for τ = 2 s and that D is relatively insensitive to τ (see
Supplemental Material). The self-diffusion of DNA in a

(B)(A)

τ (seconds)

(i)

(ii)

(iii) (iv)

vs  
(μm/s)

 

D
/D

0 (iv)

(iii)
(ii) (i)

(a)

(b)
(c) (d)

τ (seconds)

M
S

D
 (
μ
m

²)

(a)
(b)

(c)

(d)

(C)

FIG. 2. Dependence of MSD on τ in (A) the device with low
barriers for ∆p = (a) 250, (b) 140, (c) 90, and (d) 60 mbar;
and in (B) the device with high barriers for ∆p = (i) 750, (ii)
650, (iii) 555, and (iv) 400 mbar. The corresponding D/D0

and vs are indicated in (C). The dashed line has a slope of
one. (C) Dependence of D/D0 on vs for low (blue dots) and
high (red squares) barriers with τ = 2 s. Error bars are the
standard error from a bootstrap analysis of 200 resamplings
of the full dataset.

slit with ∆p = 0 could be observed for long times, so
we obtained D0 from the slope of MSD versus τ (see
Supplemental Material); we found D0 = 0.084 µm2 s−1

in the h = 88 nm slit and D0 = 0.067 µm2 s−1 in the
h = 75 nm slit.

Figure 2(C) shows the dependence of D/D0 on vs. In
both devices, D/D0 increased with vs from zero to a
peak, after which D/D0 decreased. The peak occurred
at vs = 7.2µm s−1 in the device with low barriers and at
vs = 19.7µm s−1 in the device with high barriers. The
height of the D/D0 peak also depended on the nanoto-
pography; it reached ≈ 5.5 in the device with low barriers
and ≈ 15.5 in the one with high barriers.

A non-monotonic dependence of D on driving force
(i.e. tilt) is a hallmark of GAD [2]. The theory is based
on the Langevin equation for an overdamped Brownian
particle in a periodic potential, G(y) = G(y + a), with a
constant tilt force F ,

ζ
dy

dt
= −dG(y)

dy
+ F + f(t), (3)

where ζ is the drag coefficient and f(t) is the random
force from thermal fluctuations, defined by the moments
〈f(t)〉 = 0 and 〈f(t)f(t′)〉 = 2ζkBTδ(t−t′), where δ(t−t′)
is Dirac’s delta function centered at t′ [29]. Reimann et
al. showed that the dynamics are governed by the form
of G(y) near the critical point, which is the dynamical
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bottleneck [2]. They expanded G(y) about the critical
point, chosen to be yc = 0, to obtain the small y behavior

G(y)− yF = −µy|y|q−1 − yε, (4)

where q > 0, µ > 0 characterizes the gradient of the
potential force near yc, and ε ≡ F −Fc. Equation 4 leads
to the following expression for D/D0 [2]

D

D0
=

(
aqµ

kBT

)2/q
∫∞
−∞ dyK2(y, γ)K(−y, γ)[∫∞

−∞ dyK(y, γ)
]3 , (5)

where K(y, γ) ≡
∫∞
0
dy′ e−y|y|

q−1+(y−y′)|y−y′|q−1−γy′ and

γ ≡ ε/
[
µ1/q(kBT )1−1/q

]
. In the generic case, G(y) is an

analytic function, and q = 3. D is a peaked function of
F , with the peak occurring at F ≈ Fc.

The peak corresponds to particles alternating between
trapped and freely running states. When F is very low,
particles become trapped between energy barriers and D
is suppressed. Increasing F lowers the forward energy
barrier and facilitates downhill motion. Fc is where the
barrier vanishes. Beyond that, particles can run freely
and D approaches D0.

The DNA dynamics in nanopit arrays can be mapped
onto GAD theory by casting the effective free energy
landscape for DNA, Ψ(y), in the role of G(y) − yF .
The entropic barriers give a periodic contribution S(y) to
Ψ(y). The viscous driving force is non-conservative, but
we can define an effective potential V (y) for it through
the work required to translate a molecule adiabatically
against the viscous force [14]. V (y) must be proportional
to vs. It can be written as the difference of two terms,
V (y) = U(y)vs−yζ∗vs, where U(y) is a periodic function
related to the periodically varying flow speed inside the
nanopit array, and ζ∗ is an effective drag that quantifies
the net force downstream. Combining the contributions,
Ψ(y) becomes

Ψ(y) = S(y) + U(y)vs − yζ∗vs. (6)

Equation 6 describes the competition between entropy
and enthalpy. Inertial effects are absent because the
Reynolds number in nanofluidic systems is extremely
low. With these definitions, DNA obeys Eq. 3 with
G(y) = S(y) + U(y)vs and F = ζ∗vs. Furthermore,
Eq. 5 gives the effective diffusivity of DNA with µ =
− 1

6 (S′′′(0) + U ′′′(0)vs) and ε = (ζ∗ − U ′(0)) (vs − vc)
(primes indicate derivatives; see Supplemental Material
for the derivation, which includes Refs. [27, 30]).

We fit Eq. 5 to D/D0 using µ and Fc as fitting param-
eters and assuming q = 3. The device with high barriers
obtained µ = 1.00 kBT a

−3 and Fc = 0.18 pN. The de-
vice with low barriers obtained µ = 0.21 kBT a

−3 and
Fc = 0.08 pN. Figure 3 shows D/D0 from both devices
as a function of the rescaled slit velocity vs/vc−1, where
vc is the mean slit speed at the peak. Also shown is Eq. 5

D
 /

 D
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FIG. 3. Dependence of D/D0 on vs/vc − 1 in devices with
high (red squares) and low (blue dots) barriers, and for sim-
ulation data (diamonds). The lines are fits of Eq. 5 to the
corresponding data, with fit parameters µ and Fc.

with the fit values of µ and Fc. The shape of Eq. 5 agrees
very well with the data.

To investigate the non-equilibrium forces that DNA ex-
periences and how well those are described by an effective
potential landscape, we performed computer simulations
that approximate the experiments. The system was mod-
eled using DPD, a type of coarse-grained molecular dy-
namics commonly used for applications in nanofluidics
[31–34]. A section of the device comprising three con-
secutive pits in the slit, partly shown in Fig. 1(c), was
filled with water particles using the standard parame-
ters established by Groot and Warren [35]. We modeled
λ DNA as a bead-spring polymer with 660 beads and
matched its proportions to the device geometry. A har-
monic bending energy was imposed to give the polymer
a comparable Rg to that of the DNA in the experiments.
The dimensions of the pits and slit corresponded to a de-
vice having 1.0 µm wide pits, periodicity a = 2.0 µm, and
H = h = 100 nm. Partial-slip boundary conditions were
imposed on the top and bottom boundaries according to
the method of Pivkin and Karniadakis [36]. Finally, a
uniform, time-varying force was applied to fluid in the
upper half of the device (the slit) to create the flow. The
force was adjusted to achieve a target mean fluid velocity
v. Periodic boundaries in the flow direction ensured that
fluid did not escape the system. The system was evolved
in time using a Velocity Verlet scheme [31].

We simulated a range of v. We sampled the poly-
mer’s center-of-mass position at regular intervals, com-
puted MSD, used it to determine D, and then fit the
data to Eq. 5 as before. The sampling rate, correspond-
ing to τ in the previous analysis, was chosen so that the
average number of pit-to-pit hops per τ was comparable
to the experimental data. Figure 3 shows D/D0 and the
fit of Eq. 5 from the simulations. The simulation data
closely matched the behavior in the device with low bar-
riers, whose proportions it approximated.

Our computer simulations permitted deeper analysis



4

0 20 40 60 80
-2

0

2

4

6 v = 0.06

v = 0.05

v = 0.04

52 54 56

1

-1

- 
dY

(y
) 

/ 
d
y

position

(A)

(B)

∇p

FIG. 4. (A) Side view of a simulated polymer inside a nan-
fluidic device, near the critical point, with v = 0.05. (B)
Effective force landscapes −dΨ(y)/dy for v = 0.04, 0.05, and
0.06 (labeled curves), computed from Eq. 8. The position
axis is aligned with the nanofluidic geometry in (A). The in-
set shows an expanded view of the force landscape around the
critical point. The dashed line indicates zero force.

of the underlying forces, which could not be measured
experimentally. We tracked the total force on the simu-
lated polymer, Ftotal(y, t), and mapped it to our analyt-
ical model

Ftotal(y, t) ≈ −ζ
dy

dt
− dΨ(y)

dy
+ f(t). (7)

The first term on the right hand side is the viscous drag
force, the second term is the potential force, and the third
term is the random thermal force. The effective force
from the energy landscape can be obtained by ensemble
averaging the simulation data

−dΨ(y)

dy
≈
〈
ζ
dy

dt
+ Ftotal(y, t)

〉
t

. (8)

Simulations were run below (v = 0.04 simulation units),
near (v = 0.05), and above (v = 0.06) the velocity of
peak diffusivity, with the goal of observing changes in
the effective force landscape as the critical v is passed.
For each simulation, the velocity autocorrelation function
〈v(t)v(t + τ)〉 was calculated. For small τ , this function
decays exponentially with (ζ/m)τ , where m is the par-
ticle mass. By matching this exponent with the simula-
tion data, effective values of ζ were calculated for each
simulation. We found ζ = 147.7, 140.4, and 138.5 for
v = 0.04, 0.05, and 0.06, respectively (see Supplemental
Material for details). For each simulation, we binned
data by center-of-mass y position using adaptive bins
which equalized the number of data in each bin. Using
the calculated values of ζ and the mean values of Ftotal,
dy/dt, and position within each bin, we generated ap-
proximate potential force landscapes according to Eq. 8.

Figure 4(A) shows a simulated polymer trapped near
the critical point and Fig. 4(B) plots the potential force

v p 
/ v

0

F / F
c

FIG. 5. Dependence of vp/v0 on F/Fc in devices with high
(red squares) and low (blue dots) barriers, and simulation
data (black diamonds). The corresponding lines plot Eq. 9
using the fit values of µ and Fc. The dot-dashed line shows
vp/v0 = 1.

landscapes. For the subcritical v = 0.04, a portion of
the force landscape is negative, i.e., opposing the direc-
tion of motion. As v increases, this minimum force shifts
upward, crossing through zero. In particular, the poten-
tial force minimum was closest to zero as the diffusivity
reached its peak at v = 0.05. The minima of all three
landscapes occurred around y ≈ 55, where the DNA
molecule would become trapped – pushed up against the
forward wall of the pit – before escaping.

In the theory of Reimann et al., the dynamical bottle-
neck also governs the drift velocity [2]

vp =
1− e−aF/kBT∫∞
−∞ dyK(y, γ)

. (9)

As a final test, we compare in Fig. 5 vp from the ex-
periments and simulations with Eq. 9, using the previ-
ously fit values of µ and Fc. The data are rescaled by
v0 = vs/(1 + H/2h), the approximate limiting velocity,
and plotted against F/Fc. Figure 5 shows good agree-
ment between the model and the data.

Entropic barriers develop at the nanopit edges and give
rise to GAD because the polymer can rapidly sample
the changing height inside the device (see Supplemental
Video). The situation is akin to Brownian particles in
an undulating geometry, which are predicted to exhibit
GAD if the equilibration in the transverse dimension is
relatively quick [6]. We note that Eq. 9 seems to be-
come less accurate at high vs in Fig. 5. The shape of
the force landscapes in Fig. 4 also changes noticeably as
v increases, with a sharper barrier developing near the
critical point. These effects hint at a changing entropic
barrier as the polymer is driven further from equilibrium.

In conclusion, we have demonstrated giant acceleration
of diffusion, a non-equilibrium dynamical phenomenon,
in a system with entropic barriers. GAD remarkably en-
ables measurements of sub-piconewton forces acting on
a single molecule by simply observing its motion. GAD
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also creates an opportunity to study entropic barriers by
revealing the shape of the free energy landscape near the
critical point. Future work should seek to understand
how entropic barriers change with the driving force and
investigate the possible emergence of non-ideal behavior.
Nanofluidics is a convenient arena for studying GAD and
other non-equilibrium phenomena. Such work could lead
to useful new ways of controlling molecules.
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