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Three-dimensional topological Weyl semimetals can generally support a zero-dimensional Weyl
point characterized by a quantized Chern number or a one-dimensional Weyl nodal ring characterized
by a quantized Berry phase in the momentum space. Here, in a dissipative system with particle
gain and loss, we discover a new type of topological ring, dubbed Weyl exceptional ring consisting of
exceptional points at which two eigenstates coalesce. Such a Weyl exceptional ring is characterized
by both a quantized Chern number and a quantized Berry phase, which are defined via the Riemann
surface. We propose an experimental scheme to realize and measure the Weyl exceptional ring in a
dissipative cold atomic gas trapped in an optical lattice.

Recently, condensed matter systems have proven to be
a powerful platform to study low energy gapless particles
by using momentum space band structures to mimic the
energy-momentum relation of relativistic particles [1, 2]
and beyond [3–6]. One celebrated example in three di-
mensions is the zero-dimensional Weyl point [7–18] de-
scribed by the Weyl Hamiltonian, which has been long
sought-after in particle physics but only experimentally
observed in condensed matter materials [19–21]. Such a
Weyl point can be viewed as a magnetic monopole [22]
in the momentum space and possesses a quantized Chern
number on a surface enclosing the point. Another ex-
ample is the one-dimensional Weyl nodal ring [3, 23–
25], which has no counterpart in particle physics. It
can be regarded as the generalization of Dirac nodes in
two-dimensional systems, such as in graphene, to three-
dimensional systems. Such a nodal ring has a quantized
Berry phase over a closed path encircling it but does not
possess a nonzero quantized Chern number. This leads
to a natural question of whether there exists a topologi-
cal ring exhibiting both a quantized Chern number and
a quantized Berry phase in the momentum space.

So far, studies on those gapless states focus on closed
and lossless systems. However, particle gain and loss are
generally present in natural systems. Such systems can
often be described by non-Hermitian Hamiltonians [26–
29], which are widely applied to many different sys-
tems [30–42]. Due to the non-Hermiticity, eigenvalues of
the Hamiltonian are generically complex and the imag-
inary part of energy is associated with either decay or
growth. Another intriguing feature of a non-Hermitian
system is the existence of exceptional points (EPs) [26–
29] at which two eigenstates coalesce and the Hamil-
tonian becomes defective, leading to many novel phe-
nomena, such as loss-induced transparency [31], single-
mode lasers [37, 38], and reversed pump dependence of
lasers [34].

In this paper, we investigate a system of Weyl points
in the presence of a spin-dependent non-Hermitian term
and find a Weyl exceptional ring composed of EPs. In
stark contrast to a Weyl nodal ring [3, 24, 25], which
does not have a nonzero Chern number, remarkably, this

ring exhibits a nonzero quantized Chern number as long
as the integral of the Berry curvature is evaluated over
a surface (labeled by S) that encloses the whole ring.
Since energy is multi-valued in the complex parameter
space due to its square root form, a state on the surface
S may be defined over the Riemann surface, on which a
function is single valued. On the other hand, the Chern
number is zero when the surface S does not enclose any
part of the ring even when it is located inside it. Besides
the Chern number, such a Weyl exceptional ring has a
quantized Berry phase over a trajectory encircling the
ring twice, instead of once in the case of the Weyl nodal
ring. Furthermore, we propose a feasible scheme to engi-
neer and probe the Weyl exceptional ring in a dissipative
ultracold atomic gas. In such a system, we find that the
Fermi arc can still exist but is suppressed, even though
the Weyl point transforms into a ring.

Toy model of Weyl exceptional ring—Near a Weyl
point in the momentum space, a system can be described
by the Weyl Hamiltonian HW = ±

∑
ν vνkνσν , where σν

represent Pauli matrices and ± the chirality. For clar-
ity, we consider the positive chirality and choose vν = 1
hereafter. In the presence of a non-Hermitian term iγσz
(γ > 0) associated with particle gain for spin up atoms
and loss for spin down ones, the Hamiltonian becomes

H(k) =
∑

ν=x,y,z

kνσν + iγσz, (1)

taking the energy unit to be 1. The eigenvalues
are Eθ(k) =

√
k2 − γ2 + 2ikzγ =

√
A(k)eiθ/2, where

A(k) =
√

(k2 − γ2)2 + 4k2zγ
2 with k2 = k2x + k2y + k2z ,

and θ is defined via cos θ = (k2 − γ2)/A(k) and sin θ =
2kzγ/A(k). Here, θ is used to label two branches, given
that eiθ/2 gains a minus sign upon θ → θ + 2π, corre-
sponding to the other band. In the absence of γ, energy
of both bands is real and two bands touch at k = 0 with
linear dispersion along all three momentum directions.
In this case, θ takes only two nonequivalent discrete val-
ues: 0 and 2π (corresponding to two distinct and sepa-
rate bands). When γ > 0, the eigenvalues become com-
plex, and the single touching point morphs into a Weyl
exceptional ring in the kz = 0 plane characterized by
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FIG. 1. (Color online) Energy spectra and the Riemann surface of the toy model in Eq. (1). Spectra with respect to kx and ky
for kz = 0 in (a) (real parts) and (b) (imaginary parts). Real (c) and imaginary parts (d) of the Riemann surface as a function
of ky and kz for kx = 0. In (c) and (d), the color represents the strength of θ mod 4π, and the red tube arrow shows a path
from θ = 0 to θ = 4π.

k2x + k2y = γ2. On this ring, both the real and imaginary
parts of the eigenvalues vanish [shown in Fig. 1(a) and
(b)] and two eigenstates coalesce into a single one (dif-
ferent from the case of degeneracy). Additionally, in the

kz = 0 plane, energy is Eθ(k) =
√
k2x + k2y − γ2, which is

purely real outside the ring and purely imaginary inside
it for this simple model as illustrated in Fig. 1(a) and
(b). Interestingly, θ takes continuous values from 0 to
4π (θ and θ + 4π are equivalent) and gains 2π when a
state travels through the ring and returns, ending up at
another state with opposite energy, arising from the role
of branch points that the Weyl exceptional ring plays.

In complex analysis, besides using branch cuts, an al-
ternative visual representation to depict a multi-valued
function is the Riemann surface, a two-dimensional (2D)
manifold that wraps around the complex plane infinite
(noncompact) or finite (compact) number of times. Be-
fore we discuss the topology of the Weyl exceptional ring,
let us first focus on the definition of a closed 2D surface
S via the Riemann surface. In Fig. 1(c) and (d), we plot
the Riemann surface of Eθ for kx = 0 (the color repre-
sents the strength of θ mod 4π), showing that energy is
single-valued on the surface, which connects the different
bands. Given the single value property, we define each
state on S to be living on the Riemann surface. For ex-
ample, if we consider a state at k0 with θ0, any other
states on the surface S can be obtained by starting from
this state and travelling on the momentum space surface
S while keeping Eθ(k) on the Riemann surface.

With the proper definition of a closed 2D surface, we
can characterize the topology of a Weyl exceptional ring
by the Chern number on the surface based on two ap-
proaches: the integral of spin vector fields and the Berry
curvature. For the former, the Chern number is given
by [43]

N3 =
1

4π

∮
S

dθ ·
(
∂dθ
∂u1
× ∂dθ
∂u2

)
du1du2, (2)

which characterizes the number of times that the spin
field dθ =

∑
ν=x,y,z〈σν〉eν wraps around a closed sur-

face S parametrized by (u1,u2). Here, eν denotes
the unit vector along the ν direction and 〈σν〉 ≡
〈uθ(k)|σν |uθ(k)〉 with |uθ(k)〉 being the normalized right
eigenstate of H(k) [i.e., H(k)|uθ(k)〉 = Eθ(k)|uθ(k)〉
and 〈uθ(k)|uθ(k)〉 = 1]. Direct calculations show that
N3 = ±1 when the surface S encloses the whole ring as
shown in Fig. 2(a), while N3 = 0 when it does not enclose
any part of the ring [shown in Fig. 2(b)].

Analogous to the scenario without decay [44], we may
also define the first Chern number via the Berry curva-
ture

C2 =
1

2π

∮
S

Ωθ(k) · dS, (3)

where Ωθ(k) = i〈∇kuθ(k)|× |∇kuθ(k)〉 is the Berry cur-
vature. Our calculations show that C2 = ±1 when the
surface S encloses the Weyl exceptional ring and C2 = 0
otherwise, suggesting that the topological charge is en-
tirely carried by the ring.

The physical meaning of the Berry curvature in this
system can be understood from the following semiclassi-
cal equation under an external gradient force F (see the
supplemental material for derivation)

ṙc = ∂kcĒ(kc)− k̇c ×Ωθ(kc), (4)

~k̇c = F, (5)

where Ē(kc) = Re[Eθ(kc)] + Āθ(kc) · k̇c, Āθ(kc) ≡
Re[Aθ(kc) − Ãθ(kc)] with the Berry connection be-
ing Aθ(k) = i〈uθ(k)|∂kuθ(k)〉 and Ãθ(k) =
i〈ũθ(k)|∂kuθ(k)〉, where 〈ũθ(k)| is the normalized left
eigenstate of H [i.e., 〈ũθ(k)|H(k) = 〈ũθ(k)|Eθ(k) and
〈ũθ(k)|uθ(k)〉 = 1]; rc and kc are the center coordinate
of a wave packet in the real space and momentum space,
respectively. Clearly, the Berry curvature plays the same
role as in the traditional semiclassical equation in a closed
system [45]. However, in this open system, the equation
includes a term that effectively modifies the energy spec-
tra, resulting from the difference between left and right
eigenstates, a feature in a non-Hermitian Hamiltonian.
Without F, the group velocity is dictated by the real
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part of the spectra, which implies that inside the Weyl
exceptional ring in the kz = 0 plane, the group velocity
vanishes.

Other than the Chern number on the surface, there
also exists a quantized Berry phase characterizing the
Weyl exceptional ring, defined as

C1 =

∮
2L
i〈ũθ(k)|∂kuθ(k)〉 · dk, (6)

where the path 2L travels across the ring twice along the
Riemann surface so that the state returns to the origi-
nal one after the entire trajectory as shown in Fig. 1(c)
and (d). Direct calculations yield C1 = ±π, consistent
with the result for a single EP [26]. This Berry phase
is different from that of a Weyl nodal ring in which the
quantized Berry phase is obtained when the trajectory
encircles the ring once [3, 24, 25].

Realization in dissipative cold atomic gases—To realize
the Weyl exceptional ring in cold atoms, we consider the
following model

H =
∑
kz,x

[
(h̄z + iγ)ĉ†kz,xσz ĉkz,x +

∑
ν=x,y

(−Jĉ†kz,xĉkz,x+aeν

+(−1)jx+jyJSOν ĉ
†
kz,x

σν ĉkz,x+aeν +H.c.) + h0

]
, (7)

where x = jxaex + jyaey (with a being the lat-

tice constant) labels the location of sites, ĉ†kz,x =

( ĉ†kz,x,↑ ĉ†kz,x,↓ ) with ĉ†kz,x,σ (ĉkz,x,σ) being the creation

(annihilation) operator, J and JSOν (JSOx = −JSOy =
JSO) stand for the tunneling and spin-orbit coupling

strength, h0 = [−iγ+~2k2z/(2m)]ĉ†kz,xĉkz,x, with γ denot-

ing the decay strength, and h̄z = αkz +hz is the effective
Zeeman field with α = ~2kLz/(2m) where kLz depends
on the wave vector of Raman laser beams along the z
direction, m is the mass of atoms, and hz the Zeeman
field proportional to the two-photon detuning. Here, we
consider the atoms to be trapped in an optical lattice in
the x and y directions while there is no lattice along the
z direction.

Without γ, this Hamiltonian, which has two Weyl
points and a fourfold degenerate point, can be experimen-
tally engineered by coupling two hyperfine states with
two pairs of Raman laser beams in cold atom optical lat-
tices [46]. To generate the decay term representing an
atom loss −2iγ for spin down atoms, one may consider
using a resonant optical beam to kick the atoms in the |↓〉
state out of a weak trap as shown in Fig. 2(d), which has
been experimentally realized in 6Li [42]. Alternatively,
one may consider applying a radio frequency pulse to ex-
cite atoms in the |↓〉 state to another irrelevant state |3〉,
leading to an effective decay for spin down atoms when
atoms in |3〉 experience a loss by applying an anti-trap.

To see the energy spectra, we write down the Hamil-
tonian in the momentum space,

H(k) = (h̄z + iγ)σz − htτx + τy(−bxσx + byσy), (8)
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FIG. 2. (Color online) (a) A surface enclosing a Weyl ex-
ceptional ring and (b) a surface located inside the ring. (c)
Lattice structure in the (x, y) plane. (d) Schematic of trapped
atoms being kicked out by a resonant optical beam (denoted
by the grey arrow).

in the basis Ψ(k)T with Ψ(k) =
( eikxaÂk↑ eikxaÂk↓ B̂k↑ B̂k↓ ), where Âkσ (B̂kσ)
annihilates a state with spin σ and momentum k located
at A (B) site [A and B constitute a unit cell as shown
in Fig. 2(c)]. Here, ht = 2J [cos(kxa) + cos(kya)],
bx = 2JSO sin(kxa) and by = −2JSO sin(kya); τx,y are
Pauli matrices acting on A,B sublattices. This Hamil-
tonian can be transformed into a block diagonal matrix,
i.e., H → H ′ = (h̄z + iγ)σz − htσzτz + τz(bxσy + byσx),
which commutes with τz. Note that we have neglected
the spin-independent term h0, which has no essential
effects on the physics.

Similar to the toy model in Eq. (1), eigenvalues of

this Hamiltonian are Eθ±(k) =
√
b2± − γ2 + 2ibz±γ =√

A±(k)eiθ±/2, where A±(k) =
√

(b2± − γ2)2 + 4b2z±γ
2

with b2± = b2x + b2y + b2z± and bz± = ±ht + h̄z (± la-
bel two particle or hole bands associated with the sub-
space τz = ∓ for H ′), and θ± are defined by cos θ± =
(b2± − γ2)/A±(k) and sin θ± = 2bz±γ/A±(k). With-
out γ, energy is purely real, and Weyl points emerge
at kW0 = (kxa, kya, kzaz) = [π, 0,−2mπhz/(~2k2Lz)] or
kW± = [0, 0,−2mπ(±4J + hz)/(~2k2Lz)], where az =
π/kLz. The touching point is fourfold (doubly) degen-
erate at kW0 (kW±). When γ > 0, the spectrum be-
comes complex and it is purely real only in the plane
bz± = 0. A touching point transforms into a closed line
(i.e., Weyl exceptional ring) at which particle and hole
bands coalesce when bz± = 0 and b2x + b2y = γ2, as shown
in Fig. 3(a). Around kW0, the fourfold degeneracy of
the touching point is broken, and there emerge two Weyl
exceptional rings that are not degenerate except at four
points with | sin kxax| = γ/(2

√
2JSO), kx = ±ky−π, and

kz = −hz/α [as shown in Fig. 3(a)]. Around kW±, each
Weyl point morphs into a single Weyl exceptional ring,
which can be approximated by k2x + k2y = γ2/(4J2

SO) and
kz = [−hz ± J(4− γ2/(4J2

SO))]/α when γ � 2JSO.

Analogous to the toy model, a Weyl exceptional ring
in this realistic model can be characterized by the Chern
number defined in Eq. (3), i.e., evaluated by an integral
of the Berry curvature over a closed surface S via the
Riemann surface. Around kW0, there are two Weyl ex-
ceptional rings associated with two branches θ±, and the
Chern number is defined for each band with Cθ± = 1
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FIG. 3. (Color online) (a) Schematic of Weyl exceptional rings
denoted by closed red, green and cyan lines for the system
described by the Hamiltonian in Eq. (8). The dashed box
depicts the first Brillouin zone. (b) Real (c) imaginary and
(d) absolute values of the eigenenergy with respect to kzaz
for ky = 0 and γ = 0.7J when the open boundary condition
is imposed along the x direction. The red lines are the surface
states. In (d), additional surface states for γ = 0, 0.35J, 0.86J
are plotted as blue, green and yellow lines respectively. Note
that only the parts with zero absolute energy are associated
with surface states.

(Cθ±+2π = −1) when S encloses one ring. Around
kW±, the corresponding band contributes Cθ± = −1
(Cθ±+2π = 1). Furthermore, apart from the Chern num-
ber, we can characterize the ring by a quantized Berry
phase defined in Eq. (6), i.e., evaluated along a closed
trajectory enclosing the Weyl exceptional ring twice for
a considered band with a ring.

Another intriguing feature of Weyl semimetals is the
existence of a Fermi arc, surface states that connect two
Weyl points with opposite Chern numbers in a geometry
with edges. When γ > 0, Weyl points develop into Weyl
exceptional rings, and one may wonder on the existence
of surface states with open boundaries. Here, we calcu-
late the spectra of the open system under open bound-
aries along the x direction and plot the real, imaginary
and absolute parts of the spectra in Fig. 3(b), (c), and
(d), respectively. We neglected the spin-independent en-
ergy ~2k2z/2m for clarity. Interestingly, zero energy states
emerge for both real and imaginary parts of the spectra.
Yet, the surface states (Fermi arc) are only associated
with those of zero absolute energy, which connect the
Weyl exceptional ring at the center (kW0) to those on two
sides (kW±). These states are doubly degenerate eigen-
vectors (not generalized ones [47, 48]), one (the other)
of which is localized on the left (right) surface. Com-
pared to the surface states without γ, their range along
kz decreases with respect to γ because the size of the

rings along the z direction grows with γ. Fig. 3(d) shows
the shrinking surface states for γ = 0, 0.35J , 0.7J and
0.86J . As γ becomes sufficiently large, the rings around
(kxax, kyay) = (0, 0) overlap with those around (π, 0) in
the kz direction and surface states completely disappear.

To measure the Weyl exceptional ring, a possible ap-
proach is to probe the dynamics of atom numbers of each
spin component after a quench [42]. Initially, if we only
keep the spin-independent optical lattices but switch off
the spin-dependent ones (contributing to the spin-orbit
coupling) and dissipation, we can load spin up atoms
into the system and the ground state is Ψ(k = 0, t =
0) = ( 1 0 1 0 )/

√
2 since the Hamiltonian reduces to

H = −htτx. This state can be driven to a state with
k 6= 0 by accelerating the optical lattices or by apply-
ing an external gradient force. After that, the spin-orbit
coupling and dissipation can be suddenly turned on. So
this state is no longer the eigenstate of the system and
the atom numbers will change with time. For example, if
k lies in the bz− = 0 plane, the normalized atom number
for spin down is given by

n↓=
b2x + b2y
4|Eθ|2

[ ∑
λ=±

eλ2Im(Eθ)t/~−2 cos
(2Re(Eθ)t

~

)]
, (9)

where n↓ = N↓e
γt/~ with N↓ being the atom num-

ber. Outside of the ring, Im(Eθ) = 0 and n↓ =
(b2x + b2y) sin2(Eθt/~)/E2

θ with an oscillation period of
2π~/Eθ and inside the ring Re(Eθ) = 0 and n↓ =
(b2x + b2y)[

∑
λ=± e

λ2Im(Eθ)t/~ − 2]/(4|Eθ|2) with no os-
cillation. The existence of the Weyl exceptional ring
will be manifested through the change in oscillation pe-
riods. In experiments, one may choose 87Rb (bosons)
atoms and apply blue-detuned laser beams at wavelength
λ = 767 nm [49] to generate the optical lattices with
Weyl points. With specific experimental settings, our
model parameters are given by JSO = 0.5J and J =
0.058ER, where the recoil energy is ER/~ = ~k2R/2m =
2π×3.9 kHz with kR = 2π/λ and λ being the wavelength
of laser beams. The decay strength γ can be experimen-
tally tuned by controlling the intensity of the resonant
optical beam.

In summary, we have discovered a Weyl exceptional
ring in a dissipative system of Weyl points with particle
gain and loss. Such a ring is characterized by both a
quantized Chern number and a quantized Berry phase,
which are defined via the Riemann surface. We further
propose an experimental scheme in cold atoms to realize
the Weyl exceptional ring, which paves the way for future
experimental investigation of such a ring and its unusual
topological properties.

We thank S. A. Yang for helpful discussions. This work
was supported by the ARL, the IARPA LogiQ program,
and the AFOSR MURI program.
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