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Previous realizations of synthetic gauge fields for ultracold atoms do not allow the spatial profile5

of the field to evolve freely. We propose a scheme which overcomes this restriction by using the
light in a multimode cavity with many nearly degenerate transverse modes, in conjunction with
Raman coupling, to realize an artificial magnetic field which acts on a Bose-Einstein condensate of
neutral atoms. We describe the evolution of such a system, and present the results of numerical
simulations which show dynamical coupling between the effective field and the matter on which it10

acts. Crucially, the freedom of the spatial profile of the field is sufficient to realize a close analogue
of the Meissner effect, where the magnetic field is expelled from the superfluid. This back-action
of the atoms on the synthetic field distinguishes the Meissner-like effect described here from the
Hess-Fairbank suppression of rotation in a neutral superfluid observed elsewhere.

The Meissner effect [1] is the sine qua non of supercon-15

ductivity [2]. As captured by the Ginzburg-Landau equa-
tions [3], the superfluid order parameter couples to the
electromagnetic fields such that there is perfect diamag-
netism. Physically this arises because the normal para-
magnetic response of matter is completely suppressed by20

the phase stiffness of the superfluid, leaving only the dia-
magnetic current [4]. Magnetic field thus decays expo-
nentially into the bulk [5]. Exponentially decaying fields
are symptomatic of a massive field theory, and so can be
seen as a direct consequence of the the Anderson-Higgs25

mechanism [6, 7] giving the electromagnetic field a mass
gap. Central to all these phenomena is that minimal
coupling between the electromagnetic field and the su-
perfluid modifies the equations of motion for both the
superfluid and the electromagnetic field.30

The concept of “synthetic” gauge fields has attracted
much attention over the last few years. In the context
of ultracold atoms, realizations have included schemes
based on dark states [8, 9] or Raman driving [10–12], or
inducing Peierls phases in lattice systems [13–23] (for a35

review, see [24–27]). There have also been proposals to
realize gauge fields for photons, including “free space”
realizations using Rydberg atoms in non-planar ring cav-
ity geometries [28] as well as Peierls phases for photon
hopping in coupled cavity arrays [29–31]. However, with40

a few exceptions, all these have involved static gauge
fields—there is no feedback of the atoms (or photons) on
the synthetic field. Thus, even in the pioneering demon-
stration of a Meissner phase of chiral currents [23], it
is noted that these experiments are closer to the Hess-45

Fairbank effect [32] (suppression of rotation in a neutral
superfluid), and do not show expulsion of the synthetic
field. In contrast, a charged superfluid acts back on the
magnetic field.

The synthetic field cannot be expelled in the above50

schemes because it is set by a fixed external laser or
the system geometry. The exceptions are thus propos-
als where the strength of synthetic field depends on a
dynamical quantity. One such proposal is in optome-

chanical cavity arrays with a Peierls phase for photon55

hopping set by mechanical oscillators [33]. Another pro-
posal is to consider atoms in optical cavities, replacing
the external laser drive by light in the cavity, as has
been recently proposed by Zheng and Cooper [34], with a
two photon-assisted hopping scheme involving the cavity60

and a transverse pump. This scheme naturally relates
to the self-organization of atoms under transverse pump-
ing [35–37], and proposed extensions involving spin-orbit
coupling [38–42] and self-organized chiral states [43, 44].
However, in these schemes, a single-mode cavity is used,65

giving a “mean-field” coupling due to the infinite-range
nature of the interactions, and not the local coupling
to the gauge potential present in the Ginzburg-Landau
equations.

Locality can be restored in a multimode cavity—in a70

cavity that supports multiple nearly degenerate trans-
verse modes one can build localized wavepackets [45].
This is also illustrated for a longitudinally pumped sys-
tem when considering the Talbot effect [46] with cold
atoms [47]: When atoms are placed in front of a planar75

mirror and illuminated with coherent light, phase mod-
ulation of the light is transformed by propagation into
intensity modulation, leading to self-organization. This
effect can be viewed as an effective atom-atom interac-
tion mediated by light, leading to density-wave forma-80

tion [48–50]. In this Letter, we show how multimode cav-
ity QED [45, 51–54] can be used to realize a dynamical
gauge field for cold atoms capable of realizing an analogue
of the Meissner effect for charged superfluids. The simul-
taneous presence of near-degenerate cavity modes allows85

the spatial intensity profile of the cavity light field to
change over time in response to the state of the atoms, in
a form directly analogous to the Ginzburg-Landau equa-
tions.

By realizing such a multimode cavity QED simulator90

of matter and dynamical gauge fields, numerous possi-
bilities arise. Most intriguingly, the tunability of the pa-
rameters controlling the effective matter-light coupling
potentially allow one to simulate the behavior of mat-
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FIG. 1. (a) A 2D-BEC is coupled to linearly polarized
counter-propagating Raman beams in x̂ and trapped inside
a cavity set in the multimode, confocal configuration. (Opti-
cal trapping lasers not shown, and only TEM10 and TEM01

modes shown for simplicity.) The axis of the oblate BEC is
collinear with the cavity axis. The cavity, with field loss κ, is
pumped along +ẑ by a circularly polarized field of frequency
ωp detuned by ∆0 from the confocal cavity frequency ω0. The
pump laser is spatially shaped with a digital multimirror de-
vice (DMD) spatial light modulator before cavity injection.
Cavity light is imaged by an EMCCD camera. (Atomic ab-
sorption imaging laser and camera not shown.) A magnetic
field B is oriented along +ẑ. (b) 87Rb atomic level diagram
with three coupling lasers shown. Green arrows show the
pump field that Stark shifts the state |A〉 and |B〉 by EA,B .
The laser frequency is set to the tune-out wavelength between
the D1 and D2 lines in 87Rb. The blue arrows show the two-
photon Raman-coupling fields driving π and σ− transitions—
effected by obeying electric dipole selection rules for the po-
larizations given in panel (a)—with Rabi frequencies Ωi. The
Raman fields are detuned from ω0 by a quarter of a free spec-
tral range ∆FSR/4 and the m = 0 state is detuned by ε via
the quadratic Zeeman shift.

ter with alternate values of the fine structure constant95

α. This could provide a continuum gauge field theory
simulator complementary to the proposals for simulating
lattice gauge field theories using ultracold atoms [55–65],
trapped ions [66–69], or superconducting circuits [70, 71].
Other opportunities arising from our work are to ex-100

plore the differences between Bose-condensed, thermal,
and fermionic atoms in the geometry considered above:
The Meissner effect depends on the phase stiffness of su-

perfluid atoms, so should vanish at higher temperatures.
For fermions, one might use synthetic field expulsion as105

a probe of BCS superfluidity.
Our proposal is based on the confocal cavity system re-

cently realized by Kollár et al. [53, 54]. This cavity may
be tuned between confocal multimode and single-mode
configurations. In addition, light can be pumped trans-110

versely or longitudinally, and patterned using a digital
light modulator [72]. Multimode cavity QED has previ-
ously been proposed to explore beyond mean-field physics
in the self-organization of ultracold atoms [45, 51, 54].

We consider this cavity in the near-confocal case, so115

that many modes are near-degenerate. This cavity con-
tains a 2D-condensate of atoms confined along the cavity
axis as shown in Fig. 1. These atoms have two low-lying
internal states, |A〉 and |B〉, which are coupled by two
counter-propagating Raman beams via a higher interme-120

diate state, for example, considering bosonic 87Rb, one
may create an effective two-level system from three F = 1
levels by noting that the m = ±1 levels, split by a mag-
netic field [10, 12], can be coupled via the m = 0 state,
which can be off-resonant due to the quadratic Zeeman125

shift ε, as previously shown in Refs. [12, 73]. If the popu-
lation of the excited state is negligible, the Raman beams
lead to an effective Rabi coupling Ω ∝ (

∏4
i=1 Ωi)/∆

2
Aε

between the two lower states, which in the scheme sug-
gested in Fig. 1 is fourth order and where ∆A is the130

effective detuning from the excited states. An atom in
state |A〉 gains momentum qx̂ by absorbing two photons
from one transverse beam, and loses momentum −qx̂
by emitting two photons into the other beam, finishing
in state |B〉, where q/2 = 2π/λ is the momentum of135

the Raman beams. Hence, the two states have momen-
tum differing by 2qx̂. Crucially, each state has a differ-
ent Stark shift due to the interaction with many cavity
photons contributing to the intensity I, with coefficients
EA,B . This gives an atomic Hamiltonian of the form:140

Ĥatom =
∫
d2r dzΨ̃†r,z[h + Vext(r, z)]Ψ̃r,z + Ĥint, where

h =

(
(−i∇−qx̂)2

2m − EAI(r,z) Ω/2

Ω/2 (−i∇+qx̂)2

2m − EBI(r,z)

)
. (1)

For simplicity, here and in the following, we write r =
(x, y), with the z-dependence written separately, and set
h̄ = 1. The term Ĥint describes contact interactions be-
tween atoms with strength U .145

The cavity pump field wavelength is set to be at the
“tune-out” point, 790.018 nm, between the D1 and D2

lines in 87Rb [74]. The scalar light shift is zero at this
wavelength, which means that the atom trapping fre-
quencies are nearly unaffected by the cavity light in the150

absence of Raman coupling. The vector light shift is ap-
proximately equal and opposite for states |A〉 and |B〉
due to their opposite mF projections, i.e., EA = −EB .
Spontaneous emission is low, less than ∼10 Hz for the
required Stark shifts, since this light is far detuned from155
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either excited state. The Raman coupling scheme is iden-
tical to those in Refs. [12, 73] that exhibited nearly 0.5-
s spontaneous-emission-limited BEC lifetimes. The Ra-
man lasers do not scatter into the cavity, since they are
detuned ∆FSR/4 = 3.25 GHz from any family of degener-160

ate cavity modes for a L = 1-cm confocal cavity [53]. The
BEC lifetime under our cavity and Raman-field dressing
scheme should therefore be more than 100 ms, sufficient
to observe the predicted physics.

The artificial magnetic field that arises from the Ra-165

man driving scheme is in ẑ [10], and so the interesting
atomic dynamics will be in the transverse (x̂-ŷ) plane.
We therefore consider a 2D pancake of atoms, with strong

trapping in ẑ, such that we may write ΨA,B(r, z) =
ψA,B(r)Z(z), where Z(z) is a narrow Gaussian profile170

due to the strong trapping in ẑ. In this strong trapping
limit, we can integrate out the z dependence to produce
effective equations of motion for the transverse wavefunc-
tions ψA,B and the transverse part of the cavity light
field ϕ. We consider the case where the atom cloud is175

trapped near one end of the cavity, z0 ' ±zR, as this
leads to a quasi-local coupling between atoms and cav-
ity light (see supplemental material [75] for details). We
choose to normalize the atomic wavefunctions such that∫

d2r
(
|ψA|2 + |ψB |2

)
= 1 so that the number of atoms180

N appears explicitly. The transverse equations of motion
then take the form:

i∂tϕ =

[
δ

2

(
−l2∇2 +

r2

l2

)
−∆0 − iκ−NEΣ

(
|ψA|2 + |ψB |2

)
−NE∆(|ψA|2 − |ψB |2)

]
ϕ+ f(r), (2)

i∂t

(
ψA

ψB

)
=

[
−∇

2

2m
+ Vext(r)− EΣ|ϕ|2 +NU

(
|ψA|2 + |ψB |2

)
+

(
−E∆|ϕ|2 + i q

m∂x Ω/2
Ω/2 E∆|ϕ|2 − i q

m∂x

)](
ψA

ψB

)
. (3)

Here we have rewritten EΣ = (EA + EB)/4 and E∆ =
(EA−EB)/4. ∆0 = ωP −ω0 is the detuning of the pump
from the confocal cavity frequency ω0, and f(r) is the185

pump profile. We are considering modes in a nearly con-
focal cavity for the cavity field ϕ [53]. In such a case, a
given family of nearly degenerate modes takes the form
of either even or odd Gauss-Hermite functions, where√

2l is the beam waist [76]. The first term in Eq. (2) is190

the real-space operator describing the splitting between
the nearly degenerate modes when the cavity is detuned
away from confocality with mode splitting δ. The re-
striction to only even modes means we must restrict to
ϕ(r) = ϕ(−r); however, Eqs. (2) and (3) preserve this195

symmetry if it is initially present.
We first describe in general terms the behavior we can

expect from Eqs. (2) and (3) before discussing the full
steady-state of these equations. As this model is closely
related to that proposed by Spielman [10], one may ex-200

pect the same behavior to occur [12]. Namely, if we con-
struct a basis transformation between the original levels
and the dressed states (ψ+, ψ−)T = U(ψA, ψB)T such
that the atomic Hamiltonian is diagonalized, then atoms
in each of these dressed states see effective (opposite)205

magnetic fields. The dispersion relation for the lower
manifold (i.e., the non-interacting and translationally in-
variant part of the energy) has the form

E−(k) =
1

2m∗
(
k−Q|ϕ|2x̂

)2−EΣ|ϕ|2−E4|ϕ|4+· · · , (4)

which depends on the cavity light intensity |ϕ|2. This
can be recognized as the energy of a particle in a mag-210

netic vector potential A = |ϕ|2x̂ with effective charge
Q = 2E∆q/(Ω− 2q2/m). The effective field experienced
by the atoms is therefore proportional to the differ-
ence in the Stark shifts experienced by each level, as
the average Stark shift simply leads to a scalar po-215

tential EΣ|φ|2. The atoms acquire an effective mass
m∗ = mΩ/(Ω− 2q2/m) because the eigenstate is in a su-
perposition of states with differing momenta k ± qx̂. Fi-
nally, there is an additional scalar potential term propor-
tional to E4 = E2

∆/(Ω− 2q2/m), because each component220

experiences a different Stark shift. As Ω→∞, the eigen-
state approaches a symmetric superposition, the effective
mass approaches m, and the extra scalar potential dis-
appears.

As compared to Refs. [10, 12], the crucial difference in
Eqs. (2) and (3) is that the atomic dynamics also acts
back on the cavity light field ϕ. We can explore the
nature of this back-action by expanding the low-energy
eigenstate ψ− to first order in 1/Ω. In the low-energy
manifold, the difference |ψA|2 − |ψB |2 in Eq. (2) can be
related to the wavefunction ψ− by

|ψA|2 − |ψB |2 =
q

imΩ

(
ψ∗−∂xψ− − ψ−∂xψ∗−

)
+

2E∆
Ω
|ψ−|2|ϕ|2. (5)

This has exactly the expected form of the effect of225

charged particles on a vector potential: there is a current
dependent term, the first term, followed by a diamagnetic
term. The current dependent term appearing in Eq. (2)
would lead to a paramagnetic response. However in a
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superfluid state, this contribution is suppressed due to230

the phase stiffness of the superfluid, and the surviving
diamagnetic term then leads to the Meissner effect.
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FIG. 2. (a) Ground state of condensate in a static field
|ϕ|2 ∝ |y| showing vortex formation. (b) Density of conden-
sate when the field is allowed to evolve. No vortices remain
in the cloud. (c) Relative intensity (i.e., |ϕ|2/|f0|2) of light in
cavity with no atom-light coupling used to generate (a). (d)
Steady-state relative intensity of light when coupled to atomic
cloud, showing reduction in region where atoms are present.
Vortices remain in region of low atomic density where the in-
tensity recovers and so the magnetic field is high. (e) Applied
magnetic field (derivative of intensity in (c)) and (f) mag-
netic field after coupled evolution showing the applied field
has been expelled from the condensate. All lengths are in
units of the harmonic oscillator length a0 = 1/

√
mωx. Us-

ing ωx as the frequency unit, other parameters are given by
δ = −10, l = 1, ∆0 = −50, κ = 1000, E∆ = 50, q = 70,
Ω = 105, mU = 1.5× 10−3, N = 106, and f0 = 4, all relevant
for cavity considered in [53, 54].

This diamagnetic response is shown in Fig. 2. Here we
consider a source term f(r), the pump field, which, in
the absence of atoms, we set to have an intensity pro-235

file such that |ϕ|2 ∝ |y|, and thus the magnetic field has
uniform magnitude, but with a sign dependent on y (see
supplemental material [75]). The applied effective mag-
netic field is Bz = ∂y|ϕ|2 ≈ ±|f0|2, where f0 is a constant
which specifies the overall amplitude of the pump. The240

rows of Fig. 2 show the atomic density, the cavity inten-
sity and the artificial magnetic field, respectively. The
left column shows the case where the field is artificially
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FIG. 3. Profile of (a) atomic density and (b) artificial field
with varying number of atoms, in terms of the dimensionless
parameter mNU . For realistic values, this corresponds to
N = 105 (blue), N = 5 × 105 (yellow), N = 106 (green),
N = 5× 106 (orange). All other parameters are the same as
in Fig. 2.

kept static, i.e., where the terms proportional to ψA,B

are omitted from Eq. (2) to prevent any feedback, and245

the right column shows the case when the field is allowed
to evolve.

As expected, in Fig. 2(f) we see that with the feedback
included, the magnetic field is suppressed in the region
containing the atomic cloud. Compared to the applied250

field (e), the field is suppressed in a large area where
the atomic density, shown in (a), is high. This is a con-
sequence of the change in cavity field which goes from
being linear in |y| as shown in (c), to having a region
of near constant value shown in (d). This change in the255

intensity profile can be measured directly, and so the ex-
pulsion of the effective field can be reconstructed from the
light emitted from the cavity. Additionally, as the cavity
light intensity recovers to its default value, this causes an
increase in its gradient, and so in panel (f) one sees the260

artificial magnetic field is increased immediately outside
the atom cloud. In response to the changing field, we see
that while in panel (a) there are vortices due to the static
field, in panel (b) the higher density region no longer con-
tains vortices, although they remain around the edges of265

the condensate where there is still high magnetic field.
As in the case of the standard Abrikosov vortex lattice,
the density of vortices depends on the local field strength,
and the spacing goes from being larger than the size of the
cloud to much smaller as the field recovers to its default270

value. This reduction in field |ϕ| also leads to a change in
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the geometric scalar potential terms in Eq. (4), which is
what causes the condensate to shrink in size (see also be-
low). Further out, the condensate density decays slowly
in ŷ, and the remaining vortices lead to small modula-275

tions in the intensity. However, these modulations over
small areas lead to quite large derivatives which show up
as flux-antiflux pairs.

While the results in Fig. 2 clearly show suppression
of the magnetic field analogous to the Meissner effect, it280

is important to note several differences between Eqs. (2)
and (3) and the standard Meissner effect. In particular,
while the atoms see an effective vector potential |ϕ|2x̂,
the remaining action for the field |ϕ|2 does not simulate
the Maxwell action for a gauge field: the remaining action285

does not have gauge symmetry, and has a small residual
gap (due to the cavity loss and detuning). Because the
action for ϕ is not gapless, there is already exponential
decay of the synthetic field away from its source. What
our results show is that coupling to a superfluid signif-290

icantly enhances the gap for this field (in our case, by
at least one order of magnitude), thus leading to a sig-
nificant suppression of the field in the region where the
atoms live. These differences mean that the distinction
between type I and type II superconductivity is not clear.295

These points are discussed further in [75]. The effect of
increasing the effective magnetic field strength is shown
in the figure.

The figures are the result of numerical simulations of
Eqs. (2) and (3) performed by using XMDS2 (eXtensible300

Multi-Dimensional Simulator) [77]. They represent the
steady-state which is reached when the artificial mag-
netic field, proportional to the pump amplitude, is adi-
abatically increased from zero. A computationally effi-
cient way to find this is to evolve the equation of motion305

for the light field, which includes pumping and loss, in
real time, while simultaneously evolving the equation of
motion for the condensate in imaginary time and renor-
malizing this wavefunction at each step. Hence, we find a
state which is both a steady-state of the real-time equa-310

tions of motion and also the ground state for the atoms in
that given intensity profile. This method correctly finds
the steady-state profile, but the transient dynamics does
not match that which would be seen experimentally; as
we focus only here on the steady-states. See supplemen-315

tary video and [75] for real time evolution. We make use
of the natural units of length and frequency set by the
harmonic trap, i.e., a0 = 1/

√
mωx and ωx. For realis-

tic experimental parameters, ωx may be on the order of
1 kHz and a0 ≈ 1 µm. Values of all other parameters are320

given in the figure captions.

The change in shape of the condensate in Fig. 2(c) can
be explained by our choice of potential Vext(r). As is
clear from Eq. (4), the field ϕ leads both to vector and
scalar potential terms. The scalar potentials have two325

contributions: quadratic and quartic. Analogous to the
centrifugal force on a rotating condensate, these terms

lead to a reduction (or even reversal) of the transverse
harmonic trapping of the atoms. As a consequence of
working at the tune-out wavelength, the quadratic scalar330

potentials in Eq. (4) are zero, i.e., EΣ = 0. The quartic
term is harder to eliminate, but its effects can be com-
pensated by choosing a trap of the form

Vext =
mω2

x

2

(
x2 + y2

)
+ E4|f0|4y2, (6)

i.e., an asymmetric harmonic oscillator potential with
ωy =

√
ω2
x + 2E4|f0|2/m. However, this expression as-335

sumes |ϕ|2 = |f0|2|y|, as would hold in the absence of
atomic diamagnetism. As the magnetic field is expelled,
the scalar potential also changes, and the condensate be-
comes more tightly trapped.

Figure 3 shows cross-sections at x = 0 of (a) the atomic340

density and (b) the artificial magnetic field for various
values of the total number of atoms. Increasing the num-
ber of atoms leads to a larger condensate with a lower
peak density (integral of density remains normalized).
The resulting magnetic field profile is shown in (b). The345

area of low magnetic field is closely aligned to the area of
high atomic density. At the edges of the cloud, the arti-
ficial field is increased as the expelled field accumulates
here, before returning to its default value well outside
the cloud. The effect of vortices in the very low density350

areas can also be seen. Varying other parameters leads
to similar physics, which can be understood in terms of
the effective parameters introduced in Eq. (4). The effect
of varying the effective field strength is discussed further
in [75].355

In summary, we have shown how a spatially varying
synthetic gauge field can be achieved, and how magnetic
field suppression in an atomic superfluid, analogous to
the Meissner effect, can be realized. By effecting an arti-
ficial magnetic field proportional to the intensity of light360

in a multimode cavity, we have coupled the dynamics of
the spatial profile of the magnetic field and the atomic
wavefunction. Our results illustrate the potential of mul-
timode cavity QED to simulate dynamical gauge fields,
and to explore self-consistent steady states, and poten-365

tially phase transitions, of matter coupled to synthetic
gauge fields.
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