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A theoretical ab-initio approach for calculating bound states of small atoms is developed and
implemented. The approach is based on finite-nuclear-mass (non-Born-Oppenheimer; non-BO)
non-relativistic variational calculations performed with all-particle explicitly correlated Gaussian
functions and includes the leading relativistic and quantum electrodynamics (QED) energy correc-
tions determined using the non-BO wave functions. The approach is applied to determine the total
and transition energies for the lowest four 2S electronic excitations of the boron atom. The tran-
sition energies agree with the available experimental values within 0.2–0.3 cm−1. Previously such
accuracy was achieved for three- and four-electron systems.
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The calculation of atomic energy levels and transition
frequencies with the spectroscopic precision remains one
of the most formidable problems since the early days of
quantum theory. The main challenge is to overcome the
rapid exponential growth in the amount of computations
with the increase in the system size (number of electrons),
while retaining the high accuracy in the calculations.
In the past several decades many successful quantum-
chemical approaches have been developed that brought
dramatic advances to the electronic structure theory and
open up ways for numerous applications. However, many
of these methods are only capable of reaching the chemi-
cal accuracy (of the order of 1 kcal/mol) and often cannot
effectively deal with excited states.

The problem of precise determination of the atomic en-
ergies and other basic properties stems not only from the
strong interaction between the particles, but also from
more subtle effects due to relativism, QED, and finite
nuclear mass and size. Until about a decade ago the
largest system that could be treated at the truly spectro-
scopic level of accuracy was the lithium atom [1, 2]. In
2006-2007 there were works [3, 4] on the lowest excitation
energy of the beryllium atom that employed all-electron
explicitly correlated Gaussian functions (ECGs). The
obtained value for the 31S → 21S transition energy in
these works was within the experimental error bar from
the value obtained in the experiment by Johansson [5, 6].

In this Letter we report on a next step in the journey
towards precision calculations of the ground and excited
states of small fully-correlated state-of-the-art calcula-
tions of five-electron systems can now be performed with
similar accuracy as achieved previously for He, Li, and
Be.

There have been some high-accuracy calculations con-
cerning boron ground and excited states before. In 2011
we presented calculations performed for the two lowest
2P and the lowest 2S states of boron performed with
5100 ECGs [7]. In 2015 Puchalski et al. [8] also calcu-

lated the boron ground 2P state and the first excited 2S
state using 8192 ECGs. Their calculations included the
leading relativistic and QED corrections.

Since the work on Be [4] was published, several im-
portant upgrades have been implemented in the theoret-
ical approach used in the calculations. The Araki-Sucher
and Kabir-Salpeter terms, which appear in the QED cor-
rection, have also been implemented in the non-BO ap-
proach. The computer code has been made more efficient
in terms of the parallel performance. Also, a regulariza-
tion approach (which we call “drachmanization” [9, 10])
has been implemented in the calculation of certain ex-
pectation values with the non-BO wave functions. The
new approach now allows for performing calculations on
a five-electron atom with a similar accuracy as achieved
in our Be calculations done in 2007. The present work
concerning the lowest four excited 2S states of the boron
atom (i.e. states 31S, 41S, 51S, and 61S) is the first
in a series studies concerning five-electron systems that
demonstrates this new capability.

In recent years various types of ECG basis func-
tions have been used in very accurate variational atomic
and molecular calculations performed with an approach
where the BO approximation is not assumed [11–13]. In
this approach, the motion of the electrons is treated on
equal footing with the motion of the nuclei. With that ef-
fects due to the finite nuclear mass such as isotope shifts
of the spectral transitions, relativistic recoil effects, etc.,
can be directly determined without resorting to the per-
turbation theory.

The advantage of using ECGs in atomic and molecular
calculations over other types of explicitly correlated func-
tions, such as Slaters or Hylleraas-type functions [14–18],
is due to the ease in calculating the multiparticle matrix
elements with them. Moreover, the expression for the to-
tal energy obtained using ECGs can be easily analytically
differentiated with respect to the Gaussian exponential
parameters and the energy gradient can be determined.
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The use of the analytic gradient is crucially important as
it allows for very efficient variational optimization of the
wave function, which is necessary to achieve high accu-
racy in the calculations.

10B and 11B atoms are six-particle systems each con-
sisting of five electrons and a nucleus. After separating
out the motion of the center of mass [12], the six-particle
problem is reduced to an effective five-particle problem.
The resulting internal nonrelativistic Hamiltonian, Hnr,
for the boron atom has the following form in atomic units
(a.u.):
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where q0 = +5 is the nuclear charge, qi = −1, i = 1, . . . , 5
are charges of the electrons, m0 is the mass of the nu-
cleus (we used m0 = 18247.46879 a.u. for 10B and
m0 = 20063.73729 a.u. for 11B), mi = 1, i = 1, . . . , 5
are the electron masses, and µi = m0mi/(m0 + mi),
i = 1, . . . , 5 are the reduced masses of the electrons. The
separation of the internal Hamiltonian and the Hamilto-
nian of the motion of the center of mass is rigorous. The
mass-polarization term and reduced masses µi describe
the effect of a finite nuclear mass in a non-perturbative
way.

For light atoms the most practical approach to account
for relativistic and QED effects is to expand the total
energy in powers of the fine structure constant [19, 20],

Etot = Enr + α2E
(2)
rel + α3E

(3)
QED + α4E

(4)
HQED . . . ,

where Enr is an eigenvalue of the nonrelativistic Hamilto-

nian (1), α2E
(2)
rel includes the leading relativistic correc-

tion, and α3E
(3)
QED and α4E

(4)
HQED represent the leading

and higher order QED corrections, respectively.

Quantities E
(2)
rel , E

(3)
QED, and others can be evaluated in

the framework of the perturbation theory using the non-
BO nonrelativistic wave function corresponding to Enr

as the zero-order solution. They represent the expecta-
tion values of some effective Hamiltonians. In this work
E

(2)
rel corresponds to the Dirac–Breit Hamiltonian in the

Pauli approximation [21, 22]. In the case of S-states this
Hamiltonian contains the following contributing terms,

H
(2)
rel = HMV +HD +HOO +HSS, (2)

traditionally referred to as the mass–velocity, Darwin,
orbit–orbit, and spin-spin terms. In the internal coordi-

nates their explicit form is given by [12]:
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where si are spin operators for individual electrons and
δ(r) is the Dirac delta-function.

E
(3)
QED is the expectation value of the operator [23–25]
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Here the expectation value of P (r−3
ij ) is determined as:

〈P (r−3
ij )〉 = lim

a→0
〈r−3

ij Θ(rij −a)+4π(γ+ln a)δ(rij)〉, (4)

where Θ(r) and γ = 0.577 . . . are the Heaviside step
function and the Euler-Mascheroni constant, respectively
[23, 24]. In our calculations we did not include the Bethe
logaritm, ln k0.

Lastly, E
(4)
HQED is estimated as the expectation value of

the following operator

HHQED = πq20

(
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) 5
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representing the dominant part of the so called one-loop
term [15].
The basis functions used in this work to calculate the

2S states of 10B and 11B are the following ECG functions:

φk = exp [−r
′ (LkL

′
k ⊗ I3) r] , (6)

where ⊗ denotes the Kronecker product, r is a vector
of the internal Cartesian coordinates of the five moving
particles (for the B atom r is a 15×1 vector), Lk is lower
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triangular matrix of nonlinear variation parameters (5×5
matrix), and I3 is the 3×3 identity matrix. Representing
the non-linear exponential parameters in the Cholesky-
factored form, LkL

′
k, ensures square integrability of the

Gaussian.
The spin-free formalism is used to implement the cor-

rect permutational symmetry and properly evaluate all
necessary matrix elements. In this formalism, an appro-
priate symmetry projector is applied to the spatial parts
of the wave function to impose the desired symmetry
properties. The symmetry projector can be constructed
using the standard procedure involving Young operators
as described, for example, in ref. [26]. In the case of the
2S states of boron the permutation operator can be cho-
sen as (1−P13)(1−P15−P35)(1−P24)(1+P12)(1+P34),
where Pij denotes the permutation of the spatial coor-
dinates of the i-th and j-th electrons. The above opera-
tor yields 5! = 120 terms for the matrix elements of the
Hamiltonian and overlap.
The linear coefficients, ck, in the expansion of the wave

function in terms of the basis functions and the nonlin-
ear parameters (i.e. matrices Lk) are determined by per-
forming a minimization of the total energy based on a
multistep approach that employes the analytic gradient
[12]. The variational calculations are performed sepa-
rately and independently for each state, i.e. for each
state a different basis set is generated.
The calculations involving growing the basis sets up to

15 000 functions are performed for the 11B boron isotope.
Once the basis sets are generated, they are used to per-
form calculations for the 10B isotope, as well as for the
boron atom with infinite nuclear mass, ∞B. The ∞B re-
sults provide a benchmark set of energies for comparison
with the conventional BO calculations.
The results of the calculations are summarized in Ta-

ble I. The table shows the convergence of the nonrela-
tivistic energies of the four 2S states of 11B with the
number of basis functions. Also the convergence of the
expectation values of some operators that contribute to
the relativistic and QED corrections are shown. In the
table we also present the results for 10B and ∞B obtained
with the largest basis set generated for each state as well
as the extrapolated values and estimated uncertainties.
The present results for the lowest 2S state can be

compared with the result of Puchalski et al. [8] They
used 8192 ECGs and obtained the ∞B non-relativistic
energy for the lowest 2S state of -24.471393 366 hartree.
This is marginally lower than our previous 5100-ECGs
result of -24.471393 06 hartree [7], but less converged
than our present result of -24.471393 609 hartree ob-
tained with 14 000 ECGs. To test how well converged this
latter result is, the basis set has been further enlarged to
15 000 ECGs and thoroughly optimized. The ∞B non-
relativistic energy obtained is -24.471393 624 hartree.
This value is close to the energy obtained by extrapo-
lation to a complete basis set (see Table I) and testi-

fies to the accuracy level achieved in the present calcu-
lations. The basis sets of the remaining three states are
also grown to 15 000 ECGs.
Examining further the total non-relativistic energies

of 11B shows that the convergence at the level of
5×10−8 hartree (or 2×10−9 in relative terms) is reached
for the lowest state. For the highest 6s state we estimate
the convergence at the level of 10−6 hartree (or 3×10−8 in
relative terms). In order to improve convergence of cer-
tain expectation values, we use regularization approaches
similar to those described in [9, 10]. Expectation values
obtained this way are labelled with a tilde.
The total nonrelativistic energies and the energies that

include the relativistic and QED corrections are used to
calculate the transition energies between the states. The
results are shown in Table II and compared to the val-
ues derived from the experimental data [27]. As one can
see, the transition energies obtained in the present cal-
culations agree with the experimentally derived values
within about 0.2-0.3 cm−1.
The contribution from the relativistic corrections

varies with the transition. For the lowest 4s → 3s tran-
sition it is equal to about 2.5 cm−1 while for the 6s → 3s
transition it is equal to about 10 cm−1. The inclusion of
the lowest order QED correction changes the transition
energies by about 0.3-1.5 cm−1, respectively.
By far the largest numerical uncertainty (by this we

mean the uncertainty due to the use of finite basis sets)
in our calculations comes from the nonrelativistic energy.
The numerical uncertainty in relativistic and QED cor-
rections is at least an order of magnitude smaller in ab-
solute terms. However, the second major contributor to
the discrepancy between our computed transition ener-
gies and the experimental data originates from the miss-
ing Bethe logaritm and the approximate nature of expres-
sion (5) for HHQED. The observed difference provides a
rough estimate of the neglected effects.
It is well known that the dominant contribution to the

Bethe logaritm in small atoms comes from the core elec-
trons. Thus, these values are very close to each other
for different bound states of the same atom (see, for ex-
ample, [28, 29]). Hence, the corresponding change in the
transition energies due to the Bethe logaritm is relatively
small. According to our estimates based on the behavior
of the Bethe logaritm for B+ [29], the uncertainty due to
the omitted Bethe logarithm term in our present calcu-
lations is of the order of 0.1-0.2 cm−1. Estimating the
uncertainty due to missing terms in HHQED is a more
difficult task. The one-loop term (5) should account for
80-90% of the total α4 correction to the total energy.
However, when the transition energies (e.g. differences)
are computed, the contribution due to the one-loop term
largely cancels out. Therefore, the missing terms might
be equally important. We conservatively estimate the
corresponding uncertainty at the level of 0.01-0.05 cm−1.
The present calculations allow for determining the
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shifts of the transition energies in going from 11B to 10B.
The shifts are -0.089, -0.127, and -0.188 cm−1 for the
4s → 3s, 5s → 3s, and 6s → 3s transitions, respec-
tively. These shifts are close to the experimental values
of -0.091(94), -0.117(54), and -0.13(20) cm−1 though the
experimental uncertainties in those values, particularly
for the last one, are quite high.
In summary, a new approach for calculating bound

states of small atoms has been developed and imple-
mented. It is used to determine the transition energies
between the lowest four 2S excited states of the 11B and
10B isotopes of the boron atom. The nonrelativistic en-
ergies of the four states of the main 11B isotope are cal-
culated with the variational method that makes use of
extended sets of all-electron ECG functions, and an ap-
proach that does not assume the Born–Oppenheimer ap-
proximation. In this we differ from other approaches,
such as the one employed by Puchalski et al. [8], where
the BO energies are calculated first and then corrected
for the finite mass of the nucleus using the perturba-
tion theory. Even though the non-BO effect on the total
energy of boron is very small and can be adequately de-
scribed using the perturbation theory, their inclusion in
the direct variational calculations, as done in the present
work, simplifies the approach adding very little to the
computational time. In the second step we calculate the
leading α2 relativistic and QED correction for each state.
The comparison of the transition energies with the ex-
perimental values shows an agreement at the level of 0.2-
0.3 cm−1. Lastly, the total energies of the 10B isotope
using the basis sets generated for 11B are calculated. The
differences of the corresponding transition energies of the
11B and 11B isotopes give the isotopic shifts, which agree
with the experimental values within the experimental er-
ror bars.
The work of S.B. has been supported by the Ministry
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edges partial support by NSF under Grant No. 1228509.
The authors are grateful to Prof. Gordon W. F. Drake
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authors are also grateful to the University of Arizona
Research Computing and Nazarbayev University Library
and IT Services for providing computational resources for
this work.



5

TABLE I. Nonrelativistic energies and some key expectation values for the lowest four 2S states of Boron. All values are in
atomic units.

State Isotope Basis size Enr 〈H̃MV〉 〈δ̃(ri)〉 〈δ̃(rij)〉 〈HOO〉 〈P(1/r3ij)〉

3s 11B 13000 -24.470143701 -700.2213 14.5067753 0.3581634 -1.554457 -2.9432
11B 14000 -24.470143716 -700.2213 14.5067753 0.3581634 -1.554457 -2.9431
11B 15000 -24.470143729 -700.2213 14.5067754 0.3581634 -1.554457 -2.9431
11B ∞ -24.470143767(25) -700.2212(8) 14.5067753(3) 0.3581634(1) -1.554457(1) -2.9399(20)
10B 15000 -24.470019330 -700.2072 14.5065565 0.3581587 -1.560082 -2.9430
10B ∞ -24.470019367(25) -700.2071(8) 14.5065565(3) 0.3581587(1) -1.560082(1) -2.9398(20)
∞B 15000 -24.471393622 -700.3632 14.5089743 0.3582113 -1.497933 -2.9437
∞B ∞ -24.471393659(25) -700.3631(8) 14.5089742(3) 0.3582113(1) -1.497933(1) -2.9405(20)

4s 11B 13000 -24.401943358 -699.5609 14.4957253 0.3576671 -1.551908 -2.9501
11B 14000 -24.401943402 -699.5609 14.4957252 0.3576671 -1.551907 -2.9499
11B 15000 -24.401943437 -699.5608 14.4957252 0.3576671 -1.551907 -2.9493
11B ∞ -24.401943550(70) -699.5608(10) 14.4957245(10) 0.3576671(1) -1.551902(8) -2.9490(10)
10B 15000 -24.401819440 -699.5466 14.4955060 0.3576623 -1.557525 -2.9493
10B ∞ -24.401819553(70) -699.5466(10) 14.4955054(10) 0.3576623(1) -1.557520(8) -2.9489(10)
∞B 15000 -24.403189280 -699.7028 14.4979275 0.3577151 -1.495452 -2.9499
∞B ∞ -24.403189393(70) -699.7028(10) 14.4979268(10) 0.3577151(1) -1.495447(8) -2.9505(10)

5s 11B 13000 -24.378547448 -699.0706 14.4867591 0.3573243 -1.537166 -2.9572
11B 14000 -24.378547580 -699.0705 14.4867581 0.3573243 -1.537162 -2.9569
11B 15000 -24.378547683 -699.0704 14.4867572 0.3573243 -1.537160 -2.9566
11B ∞ -24.378548020(200) -699.0701(20) 14.4867533(30) 0.3573242(2) -1.537144(30) -2.9560(10)
10B 15000 -24.378423865 -699.0561 14.4865352 0.3573194 -1.542767 -2.9566
10B ∞ -24.378424202(200) -699.0558(20) 14.4865313(30) 0.3573193(2) -1.542752(30) -2.9559(10)
∞B 15000 -24.379791736 -699.2139 14.4889879 0.3573733 -1.480817 -2.9573
∞B ∞ -24.379792072(200) -699.2136(20) 14.4889837(30) 0.3573732(2) -1.480800(30) -2.9566(10)

6s 11B 13000 -24.367924540 -697.3399 14.4539512 0.3561553 -1.464945 -2.9334
11B 14000 -24.367924960 -697.3395 14.4539458 0.3561551 -1.464929 -2.9331
11B 15000 -24.367925311 -697.3392 14.4539414 0.3561550 -1.464918 -2.9321
11B ∞ -24.367926361(700) -697.3380(80) 14.4539246(200) 0.3561545(6) -1.464818(80) -2.9256(50)
10B 15000 -24.367801782 -697.3237 14.4536955 0.3561493 -1.470453 -2.9320
10B ∞ -24.367802832(700) -697.3225(80) 14.4536791(200) 0.3561488(6) -1.470354(80) -2.9355(50)
∞B 15000 -24.369166472 -697.4951 14.4564106 0.3562124 -1.409293 -2.9330
∞B ∞ -24.369167521(700) -697.4937(80) 14.4563902(200) 0.3562118(6) -1.409185(80) -2.9364(50)
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TABLE II. Computed ns → 3s transition frequencies (in cm−1) for boron atom in comparison with the values derived from
experiment. The subscript (nr, nr + rel, nr + rel + QED, or nr + rel + QED + HQED) indicates the inclusion of relativistic and
QED corrections in the calculations.

Transition Isotope Basis size ∆Enr ∆Enr+rel ∆Enr+rel+QED ∆Enr+rel+QED+HQED

4s → 3s 11B 13000 14968.245 14970.740 14970.418 14970.410
11B 14000 14968.239 14970.734 14970.412 14970.404
11B 15000 14968.234 14970.730 14970.408 14970.400
11B ∞ 14968.217(10) 14970.713(10) 14970.391(10) 14970.383(10)
11B Exp. [27] 14970.561(27)
10B 15000 14968.146 14970.641 14970.320 14970.311
10B ∞ 14968.129(10) 14970.624(10) 14970.302(10) 14970.294(10)
10B Exp. [27] 14970.47(9)

5s → 3s 11B 13000 20103.054 20107.210 20106.627 20106.612
11B 14000 20103.028 20107.185 20106.602 20106.587
11B 15000 20103.008 20107.166 20106.583 20106.568
11B ∞ 20102.943(40) 20107.102(40) 20106.518(40) 20106.503(40)
11B Exp. [27] 20106.747(20)
10B 15000 20102.881 20107.039 20106.456 20106.441
10B ∞ 20102.815(40) 20106.975(40) 20106.391(40) 20106.376(40)
10B Exp. [27] 20106.63(5)

6s → 3s 11B 13000 22434.513 22444.254 22442.699 22442.659
11B 14000 22434.424 22444.166 22442.611 22442.571
11B 15000 22434.350 22444.094 22442.538 22442.499
11B ∞ 22434.127(150) 22443.874(150) 22442.318(150) 22442.278(150)
11B Exp. [27] 22442.50(14)
10B 15000 22434.159 22443.908 22442.351 22442.311
10B ∞ 22433.936(150) 22443.688(150) 22442.131(150) 22442.091(150)
10B Exp. [27] 22442.37(14)
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