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We report a lattice QCD calculation of the strange quark contribution to the nucleon’s magnetic
moment and charge radius. This analysis presents the first direct determination of strange elec-
tromagnetic form factors including at the physical pion mass. We perform a model-independent
extraction of the strange magnetic moment and the strange charge radius from the electromagnetic
form factors in the momentum transfer range of 0.051 GeV2 <∼ Q2 <∼ 1.31 GeV2. The finite lattice
spacing and finite volume corrections are included in a global fit with 24 valence quark masses on four
lattices with different lattice spacings, different volumes, and four sea quark masses including one
at the physical pion mass. We obtain the strange magnetic moment GsM (0) = −0.064(14)(09)µN .
The 4-sigma precision in statistics is achieved partly due to low-mode averaging of the quark loop
and low-mode substitution to improve the statistics of the nucleon propagator. We also obtain the
strange charge radius 〈r2s〉E = −0.0043(16)(14) fm2.

The determination of the strange (s) quark contribu-
tion to nucleon electromagnetic (EM) form factors is of
immense importance since this is a pure sea quark ef-
fect. A nonzero value of the strange Sachs electric form
factor (FF) GsE at any Q2 6= 0 would mean that the spa-
tial distribution of s and s̄ quarks are not the same in
the nucleon. Since the extraction of the vector strange
matrix elements 〈N |s̄γµs|N〉 was proposed in [1–3] via
parity-violating e−N scattering for which the dominant
contribution arises from interference between photon (γ)
and weak boson (Z) exchanges by the following relation
assuming isospin symmetry,

GZ,pE,M (Q2) = (
1

4
− sin2 θW )Gγ,pE,M (Q2)− 1

4
Gγ,nE,M (Q2)

−1

4
Gs,pE,M (Q2) , (1)

a considerable number of experimental efforts by the
SAMPLE, HAPPEX, G0, and A4 [4–15] collaborations
have been going on for the last two decades. The world
data constrains that GsM (0) contributes less than 6%
and 〈r2

s〉E contributes less than 5% to the magnetic mo-
ment and the mean-square charge radius of the proton
respectively [16]. However, all these experimental results
are limited by rather sizable error bars. Three different
global analyses give GsM (Q2 = 0.1 (GeV/c)

2
) consistent

with zero within uncertainties and differ in sign in their
central values [17–19].

Despite tremendous theoretical efforts, e.g. [20–23], a
detailed convincing understanding about the sign and
magnitude of strange EM FFs is still lacking. A detailed
review of these theoretical efforts can be found in [24].

Since the direct calculation of the s-quark loop in the
disconnected insertion (DI) is difficult and noisy in lattice
QCD, there have been numerous indirect calculations to
predict the strange vector FFs. Most of the calculations
rely on different models (such as heavy baryon chiral per-
turbation theory), or a combination of experimental and

lattice QCD data of connected u- and d-quark contribu-
tions [26–28], etc.. The most recent result of such cal-
culations has found GsM (0) = −0.07(3)µN and GsE(0)
consistent with zero [29]. While the authors performed
a linear extrapolation of GsM (Q2) to obtain GsM (0), this
linear behavior is different from what we observe in this
work and the most recent lattice QCD analysis in [32].

The first lattice QCD calculation was performed in
the quenched approximation [30] and a 2 + 1 flavor dy-
namical fermion calculation [31] with relatively heavy
pion masses followed from the same group who obtained
GsM (0) = −0.017(25)(07)µN and GsE(0) consistent with
zero. A recent lattice QCD calculation [32] has been done
with quark masses corresponding to mπ = 317 MeV and
the authors obtained GsM (0) = −0.022(8) µN and, for
the first time, a nonzero signal for GsE(Q2) which gave
〈r2
s〉E = −0.0067(25) fm2. However, one still has to per-

form the calculation at the physical pion mass and on
several lattices to consider volume and finite cut-off cor-
rections, and over all beat down the noise to obtain a
convincing result which will substantially sharpen our
picture of strange quark contributions to the nucleon’s
EM structure.

Conventionally, we omit the unit nucleon magneton µN
for GsM in the rest of the paper. To calculate 〈N |s̄γµs|N〉,
we compute the DI on the lattice where quark loops in the
nucleon sea are connected to the valence quarks through
the fluctuating gauge background as shown in Fig. 1. We
present lattice calculations of the strange EM FFs using
the overlap fermion on the (2 + 1) flavor RBC/UKQCD
domain wall fermion (DWF) gauge configurations. De-
tails of these ensembles are listed in Table I. We use 24
valence quark masses in total for the 24I, 32I, 48I, and
32ID ensembles representing pion masses in the range
mπ ∈(135, 400) MeV to explore the quark-mass depen-
dence of the s-quark FFs. We employ eigenmode defla-
tion in the inversion of the quark matrix and use the
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FIG. 1. Disconnected three point insertion (DI) to calculate
the s̄γµs matrix element in the nucleon state

TABLE I. The parameters for the DWF configurations: spa-
tial/temporal size, lattice spacing [36, 37], the sea strange
quark mass under MS scheme at 2 GeV, the pion mass cor-
responding to the degenerate light sea quark mass and the
numbers of configurations used in this work.

Ensemble L3 × T a (fm) m
(s)
s (MeV) mπ (MeV) Nconfig

24I [37] 243 × 64 0.1105(3) 120 330 203
32I [37] 323 × 64 0.0828(3) 110 300 309
48I [36] 483 × 96 0.1141(2) 94.9 139 81

32ID [36] 323 × 64 0.1431(7) 89.4 171 200

smeared grid Z(3)-noise source with low-mode substitu-
tion (LMS) to improve statistics by a very significant
amount, details of which can be found in [38–40]. Nu-
cleon two-point (2pt) and three-point (3pt) correlation
functions are defined as

Π2pt(~p ′,t2;t0)=
∑
~x

e−i~p
′·~x〈0|T [χ(~x,t2)

∑
xi∈G

χ̄S(xi,t0)]|0〉 ,

Π3pt
Vµ

(~p ′, t2;~q,t1;t0)=
∑
~x2,~x1

e−i~p
′·~x2+i~q·~x1〈0|T [χ(~x2,t2)

Vµ(~x1,t1)
∑
xi∈G

χ̄S(xi,t0)]|0〉 , (2)

where t0, t2 are the source and sink temporal positions,
~p, ~p ′ are the source and sink momenta, t1 is the time
at which the bilinear operator Vµ(x) = s̄(x)γµs(x) is in-
serted, xi are points on the spatial grid G, χ is the usual
nucleon point interpolation field and χ̄S is the nucleon in-
terpolation field with grid smeared Z3-noise source, and
the three-momentum transfer is ~q = ~p ′ − ~p as shown in
Fig. 1. For the point sink and smeared source with t0 = 0
and ~p = ~0 and ~q = ~p ′ the Sachs FFs can be obtained by
the ratio of a combination of 3pt and 2pt correlations
with appropriate kinematic factors,

Rµ(~q, t2,t1)=
Tr[ΓmΠ3pt

Vµ
(~q, t2,t1)]

Tr[ΓeΠ2pt(~0, t2)]
e(Eq−m)·(t2−t1) 2Eq

Eq +m
.

(3)

Here, Eq =
√
m2
N + ~q 2 and mN is the nucleon mass. The

choice of the projection operator for the magnetic form
factor is Γm=Γk=−i(1 + γ4)γkγ5/2 with k=1, 2, 3 and
that for the electric form factor is Γe=(1 + γ4)/2. Then
in the limit (t2 − t1) � 1/∆m and t1 � 1/∆m, we can
obtain two Sachs FFs by appropriate choice of projection

operators and current directions µ,

Rµ=i(Γk)
(t2−t1)�1/∆m,t1�1/∆m−−−−−−−−−−−−−−−−−→ εijkqj

Eq +mN
GsM (Q2),

Rµ=4(Γe)
(t2−t1)�1/∆m,t1�1/∆m−−−−−−−−−−−−−−−−−→GsE(Q2), (4)

with i, j, k 6= 4 and ∆m the mass gap between the ground
state and the first excited state. We note that Rµ con-
tains a ratio ZP (q)/ZP (0), where ZP (q) is the wavefunc-
tion overlap for the point sink with momentum |~q|. It
is unity in the continuum limit, but has a small q2a2 er-
ror at finite lattice spacing. We checked this ratio for
the 32I (smallest a) and the 32ID (largest a) lattices and
found its effect on the extrapolated magnetic moment
and charge radius is only about 1− 2% and thus ignored
it.

We incorporate a global-fit technique described in [41]
to determine the s-quark mass by matching to the renor-
malized s-quark mass at 2 GeV scale in the MS scheme
and use normalized vector currents [42]. To control the
excited-state contamination and obtain better signal-to-
noise ratios we perform a joint 2-state correlated fit by si-
multaneously fitting the standard 3pt/2pt ratio R(t2, t1)
and the widely used summed ratio SR(t2) [43] to cal-
culate DI matrix elements. We call this hybrid method
the combined fit (CF) throughout the rest of this work.
For more details, see ref. [40]. The R(t2, t1) and SR(t2)
fitting formulas for a given direction of current and mo-
mentum transfer can be written as,

R(t2, t1) = C0 + C1e
−∆m(t2−t1) + C2e

−∆mt1 + C3e
−∆mt2 ,

SR(t2) =

t1≤(t2−t′′)∑
t1≥t′

R(t2, t1)

= (t2 − t′ − t
′′

+ 1)C0 + C1
e−∆mt′′ − e−∆m(t2−t′+1)

1− e−∆m

+C2
e−∆mt′−e−∆m(t2−t′′+1)

1− e−∆m
+C3(t2 −t′ −t′′ +1)e−∆mt2 .

Here, t′ and t
′′

are the number of time slices we drop
at the source and sink sides respectively and we choose
t′ = t′′ = 1. Ci and ∆m are fit parameters. The present
scheme with the CF technique allows us to obtain a sta-
ble fit and control the excited-state contamination. We
find, for the lighter quark masses on the 24I and 32I en-
sembles, the enhancement in the signal-to-noise ratio is
approximately 5− 10% and near mπ = 140 MeV for the
48I and 32ID ensembles the CF fit is more stable com-
pared to the SR and R methods separately.

In Fig. 2, we present the result of CF for a particular
case, the 48I ensemble with quark masses for the nucleon
corresponding to mπ = 207 MeV, Q2 = 0.0515 GeV2 and
several source to sink separations t2 ∈ [5 − 9]. We show
the SR(t2) plot with an inset in the R(t2, t1) plot. One
can clearly see from the SR-plot that the slope is negative
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FIG. 2. Combined fit result for disconnected contribution
GsM (Q2 = 0.0515 GeV2) with mπ = 207 MeV. The bands
show fits to the 3pt/2pt ratios. The current insertion time t1
is shifted by half the sink-source separation for clarity.

and from the R-plot that the 3pt/2pt ratio saturates near
t2 = 9. The orange and cyan bands in the R- and SR-
plots show the error bound obtained from the CF which
is GsM (Q2 = 0.0515 GeV2) = −0.029(9). We present this
plot in particular to show how one can obtain a reliable
and stable fit near the physical mπ. The unprecedented
precision we obtain in statistics is partly due to the fact
that we calculate the low-mode contribution to the loop
exactly without any stochastic noise. We find that about
15 − 25% of the signal is saturated by the low modes
while determining the s-quark matrix elements in this
calculation.

Next, we explore the Q2 dependence of GsM (Q2) to
obtain the strange magnetic moment at Q2 = 0. We
compare both the dipole form [33] and the model inde-
pendent z-expansion fit [34, 35] given by,

Gs,z−expM (Q2)=

kmax∑
k=0

akz
k,z=

√
tcut +Q2 −

√
tcut√

tcut +Q2 +
√
tcut

. (5)

We set tcut = (2mK)2. We keep the first three coefficients
multiplying zk in the z-expansion formula and perform
fits versus Q2. We calculate the Jackknife ensemble aver-
age a2,avg of the coefficient a2 and then perform another
fit by setting a2 centered at a2,avg with a prior width
equal to 2 × |a2,avg|. We find the effect of setting this
prior is almost insignificant for the 24I and 32I ensem-
ble data, especially at heavier quark masses. However,
the prior stabilizes the extrapolation of GsM (Q2) for pion
masses around the physical point for the 48I ensemble.
Since the z-expansion method guarantees that ak coef-
ficients are bounded in size and that higher order ak’s
are suppressed by powers of zk, we carefully check the
effect of the a3 coefficient in our fit formula and estimate
this effect to calculate the systematic uncertainties in the
z−expansion fit. We present the extrapolation of GsM (0)
using both the dipole and z-expansion methods in Fig. 3
with the smallest lattice spacing a = 0.0828(3) fm used in
our simulation and lattice data at the unitary point for
the 32I ensemble with a pion mass mπ = 330 MeV. The
present calculation does not provide any conclusive ev-
idence of any statistically-significant difference between

these two methods, as seen in the figure. However, be-
cause of model-independence and goodness of the fit, we
use z−expansion fit results in the rest of our calculation.
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FIG. 3. Comparison between the classical dipole form and
the model-independent z-expansion fit to study the Q2-
dependence of GsM and extract GsM (0). The GsM (Q2) data
points correspond to the 32I ensemble with quark masses cor-
responding to mπ = 330 MeV.

From the z-expansion extrapolations, we obtain 24
different estimates of GsM (0) from four different lattice
ensembles with varying quark masses. As the nucleon
2pt correlation function depends on the valence quark
masses and the strange quark matrix elements depend
on mloop, we use a chiral extrapolation linear in mπ and
mloop = mK [21, 44–46]. To account for the partial
quenching effect with the valence-sea pion mass (mπ,vs),
and the O(a2) correction and volume dependence [47],
the global fit formula we use for the extrapolation of
GsM (0) to the physical point is

GsM (0;mπ,mπ,vs,mK , a, L) = A0 +A1mπ +A2mK

+A3m
2
π,vs+A4a

2+A5mπ

(
1− 2

mπL

)
e−mπL, (6)

where mπ/mK is the valence pion/kaon mass
and mπ,vs is the partially quenched pion mass
m2
π,vs = 1/2(m2

π +m2
π,ss) with mπ,ss the pion mass cor-

responding to the sea quark mass. A4 includes the mixed
action parameter ∆mix [48]. The extrapolation of the
strange magnetic moment is shown in Fig. 4 and at the
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FIG. 4. Strange magnetic moment at 24 quark masses on 24I,
32I, 48I, and 32ID ensembles as a function of the pion mass.
The curved blue line in the figure shows the behavior in the
infinite volume and continuum limit. The cyan band shows
the combined statistical and systematic uncertainties added
in quadrature.



4

physical point in the limit a→ 0 and L→∞ we obtain

GsM (0)|physical = −0.064(14)(04)(06)(06)µN . (7)

Here, the uncertainties in the parentheses are from
the statistics, interpolation to the physical s-quark
mass [41], introducing a3 coefficients in the z-expansion
fit, and from the global fit formula for the contin-
uum extrapolation of GsM (0), respectively. To calcu-
late the uncertainty associated with the global fit for-
mula, we consider the higher order volume correction

terms (m
3/2
π /
√
L)e−mπL [47], mNmK [45], logm2

π, and
mπ,vs. We obtain the fit coefficients: A1 = 0.61(16),
A2 = −2.26(49), A3 = 0.31(12), A4 = 0.015(16), and
A5 = −4.0(2.4) with the sign of A5 consistent with that
in [47]. We note that the O(a2) effect is small, whereas
the partial quenching effect and the volume correction
along with the quark mass dependence play roles in our
global fit. While GsM (0)-values for different ensembles
are consistent within uncertainty near mπ = 250 MeV,
from the fit coefficients it can bee seen that near mπ =
400 MeV, GsM (0) calculated from the 48I ensemble is
more negative due to the partial quenching effect.

For a given valence quark mass we fit GsE(Q2) using
the z−expansion method described above and calculate
the charge radius from the fitted slope of the data using

the definition 〈r2
s〉E ≡ −6

dGsE
dQ2 |Q2=0. The net strangeness

in the nucleon is zero and thus GsE(0) = 0 which we
confirm in our simulation. Chiral extrapolation to the
〈r2
s〉E data is obtained from [45]. Because the method of

finite volume correction of nucleon charge radius is less
clear and hard to obtain [49, 50], we employ an empirical
formula for the volume correction to describe our lattice
data. The empirical fit formula we use to obtain 〈r2

s〉E
at the physical point is

〈r2
s〉E(mπ,mπ,vs,mK , a, L) = A0+A1 log (mK)

+A2m
2
π +A3m

2
π,vs +A4a

2 +A5

√
Le−mπL. (8)

We find that the volume correction term similar to the
pion charge radius term derived in [50] describes our
lattice data well. From the fitted values of the coeffi-
cients in Eq. (8), namely, A1 = 0.03(2), A2 = −0.04(8),
A3 = 0.03(2), A4 = −0.0004(27), and A5 = 0.001(7), it is
seen that among different contributions the quark mass
dependence and partial quenching effect are more im-
portant in determining 〈r2

s〉E from our lattice data. We
also consider e−mπL, mK instead of logmK , 1/m2

N [45],
mπ,vs and calculate a systematic error derived from dif-
ferent terms in the global fit formula. We present the
value of 〈r2

s〉E at the physical point in Fig. 5 which gives,

〈r2
s〉E |physical = −0.0043(16)(02)(12)(07) fm2. (9)

The uncertainties in the second and third parentheses
of Eq. 9 are obtained using similar methods described
in the case of GsM (0). The lowest Q2 values for 48I and
32ID ensembles are 0.051 and 0.073 GeV2 respectively,
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FIG. 5. Strange charge radius at 24 quark masses on 24I,
32I, 48I, and 32ID ensembles as a function of the pion mass.
The curved blue line in the figure shows the behavior in the
infinite volume and continuum limit. The cyan band shows
the combined statistical and systematic uncertainties added
in quadrature.
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FIG. 6. Comparison of some of the many determinations of
strange magnetic moment. Results in the red are from global
analysis of world data, results in the green are from indirect
calculations, and results in the blue are from lattice QCD
calculations.

which are almost 3−4 times smaller than the lowest Q2 =
0.22 GeV2 of the 24I and 32I ensemble. As extracting the
charge radius from the FFs data can be sensitive to the
lowest available Q2, this can affect our determination of
〈r2
s〉E . A 20% uncertainty in introducing the a3 term in

the z−expansion has been included as a systematic in
the final result of 〈r2

s〉E .

Finally, we present Fig. 6 to compare our result of
GsM (0) and GsM (Q2 = 0.1 GeV2) = −0.037(10)(05) with
some other measurements of GsM (0) and global analy-
ses of GsM at Q2 = 0.1 GeV2. We strongly believe that
controlling excited-state contamination, performing the
simulation near the physical pion mass and considering
finite size effect altogether play an important role in de-
termining the strange magnetic moment as observed in
our lattice simulation.

To conclude, we have performed a robust first-
principles lattice QCD calculation using four different
2 + 1 flavor dynamical fermion lattice ensembles includ-
ing, for the first time, the physical pion mass to explore
the quark mass dependence and with finite lattice spacing
and volume corrections to determine the strange quark
matrix elements in the vector channel. We have per-
formed a two-state fit where we combined both the ratio
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method and the summed-ratio method to control excited-
state contamination. The statistical error is greatly re-
duced by improving the nucleon propagator with LMS
and quark loop with LMA. To explore the strange vec-
tor form factors at different momentum transfers, we im-
plemented model-independent z−expansion fits. Given
our precise lattice prediction for the strange quark mag-
netic moment of GsM (0) = −0.064(17)µN and strange
charge radius 〈r2

s〉E = −0.0043(21) fm2 at the physical
point with systematic errors included, we anticipate these
results to be verified by experiments in the future and,
together with experimental inputs, can lead to more pre-
cise determination of various weak form factors.
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