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Quantum metrology utilizes nonclassical resources, such as entanglement or squeezed light, to
realize sensors whose performance exceeds that afforded by classical-state systems. Environmental
loss and noise, however, easily destroy nonclassical resources, and thus nullify the performance
advantages of most quantum-enhanced sensors. Quantum illumination (QI) is different. It is a
robust entanglement-enhanced sensing scheme whose 6 dB performance advantage over a coherent-
state sensor of the same average transmitted photon number survives the initial entanglement’s
eradication by loss and noise. Unfortunately, an implementation of the optimum quantum receiver
that would reap QI’s full performance advantage has remained elusive, owing to its having to deal
with a huge number of very noisy optical modes. We show how sum-frequency generation (SFG) can
be fruitfully applied to optimum multi-mode Gaussian-mixed-state discrimination. Applied to QI,
our analysis and numerical evaluations demonstrate that our SFG receiver saturates QI’s quantum
Chernoff bound. Moreover, augmenting our SFG receiver with a feed-forward (FF) mechanism
pushes its performance to the Helstrom bound in the limit of low signal brightness. The FF-SFG
receiver thus opens the door to optimum quantum-enhanced imaging, radar detection, state and
channel tomography, and communication in practical Gaussian-state situations.

Introduction.— Entanglement is essential for device-
independent quantum cryptography [1], quantum com-
puting [2], and quantum-enhanced metrology [3]. It
has also been employed in frequency and phase esti-
mation to beat their standard quantum limits on mea-
surement precision [4–10]. Furthermore, entanglement
has applications across diverse research areas, includ-
ing dynamic biological measurement [11], delicate ma-
terial probing [12], gravitational wave detection [13],
and quantum lithography [14]. Entanglement, however,
is fragile; it is easily destroyed by quantum decoher-
ence arising from environmental loss and noise. Con-
sequently, the entanglement-enabled performance advan-
tages of most quantum-enhanced sensing schemes quickly
dissipate with increasing quantum decoherence, challeng-
ing their merits for practical situations.

Quantum illumination (QI) is an entanglement-
enhanced paradigm for target detection that thrives on
entanglement-breaking loss and noise [15–22]. Its opti-
mum quantum receiver enjoys a 6 dB advantage in error-
probability exponent over optimum classical sensing us-
ing the same transmitted photon number. Remarkably,
QI’s advantage occurs despite the initial entanglement
being completely destroyed.

To date, the only in-principle realization of QI’s opti-
mum quantum receiver requires a Schur transform on a
quantum computer [23], so that its physical implementa-
tion is unlikely to occur in the near future. At present,
the best known sub-optimum QI receivers [20, 21]—one of
which, the optical parametric amplifier (OPA) receiver,
has been demonstrated experimentally [21]—can only re-
alize a 3 dB error-probability exponent advantage. Bridg-
ing the 3 dB performance gap between the sub-optimum
and optimum receivers with an implementation more fea-
sible than a quantum computer is of particular signifi-

cance for its application potential and for its deepening
our understanding of entanglement-enhanced metrology.

In this Letter we present an optimum QI-receiver ar-
chitecture based on sum-frequency generation (SFG). In
the weak-signal limit, the SFG unitary maps QI target
detection to the well-studied problem of single-mode co-
herent state discrimination (see Ref. [24] for a review).
Analytical calculation and Monte Carlo simulations con-
firm that this SFG receiver’s performance approaches
QI’s quantum Chernoff bound (QCB) [18] asymptoti-
cally. Adding a feed-forward (FF) mechanism yields the
FF-SFG receiver, whose error probability achieves the
Helstrom bound [25]. The FF-SFG receiver is potentially
promising for other quantum-enhanced sensing scenarios,
such as phase estimation, and it enlarges the toolbox for
quantum-state discrimination [26–39]. In particular, it is
the first architecture—short of a quantum computer—for
optimum discrimination of multi-mode Gaussian mixed
states, a major step beyond the optimum discrimination
of single-mode pure states [40–43].
Target detection.— QI target detection works as fol-

lows [18]. An entanglement source generates M � 1
signal-idler mode pairs, having photon annihilation oper-
ators {ĉS0m

, ĉI0m : 1 ≤ m ≤M}, with each pair being in
a two-mode squeezed-vacuum state of mean photon num-
ber 2NS � 1. The signal modes probe for the presence
of a weakly-reflecting target embedded in a bright back-
ground, under the assumption that it is equally likely to
be absent or present, while the idler modes are retained
for subsequent joint measurement with light collected
from the region interrogated by the signal modes. (We
shall assume lossless idler storage, so that the idler modes
used for that joint measurement satisfy ĉIm = ĉI0m .)
When the target is present (hypothesis h = 1), the re-
turned signal modes are ĉSm

=
√
κ ĉS0m

+
√
1− κ ĉNm ,
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where κ � 1 is the roundtrip transmissivity and the
{ĉNm} are noise modes in thermal states containing
NB/(1 − κ) � 1 photons on average. When the target
is absent (hypothesis h = 0), the returned signal modes
are ĉSm

= ĉNm
, where the {ĉNm

} are now taken to be in
thermal states with average photon number NB [44].

Omitting the κNS � NB contribution to 〈ĉ†Sm
ĉSm
〉

when the target is present, and conditioned on h = j, the
{ĉSm , ĉIm} constitute a set of independent, identically-
distributed (iid) mode pairs that are in zero-mean Gaus-
sian states with Wigner covariance matrix

Λj =
1

4

(
(2NB + 1)I 2CpZδ1j
2CpZδ1j (2NS + 1)I

)
, (1)

where I = diag(1, 1), Z = diag(1,−1), δij is the Kro-
necker delta function, and Cp =

√
κNS(NS + 1) is the

phase-sensitive cross correlation that exists when the tar-
get is present. The task of QI target detection is thus
minimum error-probability discrimination between two
M -mode-pair, zero-mean Gaussian states that are char-
acterized by the {Λj}.

For equally-likely hypotheses, the minimum error-
probability quantum measurement for discriminating be-
tween states with density operators ρ̂0 and ρ̂1 is the
Helstrom measurement u(ρ̂1 − ρ̂0), where u(x) = 1 for
x ≥ 0 and 0 otherwise [25]. Absent the availability of
a quantum computer, the best known QI receivers have
error-probability exponents that are 3 dB inferior to opti-
mum quantum reception. These sub-optimum receivers
use Gaussian local operations on each mode pair plus
photon-number resolving measurements, and hence be-
long to the class of local operations plus classical commu-
nication (LOCC). Their sub-optimality follows because
LOCC is not optimum for general mixed-state discrimi-
nation [45, 46].

To go beyond LOCC, we will employ SFG. The QI
transmitter uses a continuous-wave spontaneous para-
metric downconverter (cw-SPDC) to generate M �
1 signal-idler mode pairs—at frequencies {ωSm , ωIm}—
during target-region interrogation. These mode pairs
originate from a single-mode pump b̂ at frequency ωb =
ωSm

+ ωIm . Each mode has average photon number NS

and each mode pair has a phase-sensitive cross corre-
lation

√
NS(NS + 1). SFG is SPDC’s inverse process:

M independent signal-idler mode pairs with the same
phase-sensitive cross correlation can combine, coherently,
to produce photons at the pump frequency. It is natu-
ral, therefore, to explore SFG in seeking an optimum QI
receiver, because the phase-sensitive cross correlation Cp

in Eq. (1) is the signature of target presence. We begin
with some foundational results for SFG.
Sum-frequency generation.— We will describe SFG by

Schrödinger evolution for t ≥ 0 under interaction Hamil-

tonian

ĤI = ~g
M∑

m=1

(b̂†âSm
âIm + b̂â†Sm

â†Im), (2)

with M � 1, where ~ is the reduced Planck constant
and g is the interaction strength. We will assume that
at time t = 0 the {âSm , âIm} mode pairs (at frequencies
{ωSm , ωIm}) are in iid zero-mean Gaussian states, while
the b̂ sum-frequency mode (at frequency ωb = ωSm

+ωIm)
is in its vacuum state. We will assume that the state
evolution stays wholly within the low-brightness, weak
cross-correlation regime wherein ns(t) ≡ 〈â†Sm

âSm〉t � 1,
ni(t) ≡ 〈â†Im âIm〉t � 1, and |C(t)|2 ≡ | 〈âSm âIm〉t |2 �
ns(t), ni(t) for all time, where 〈·〉t denotes averaging with
respect to the state at time t. The qubit approximation
to this evolution leads to the analytical results [24]

C(t) = C(0) cos(
√
Mgt) (3a)

b(t) = −i
√
MC(0) sin(

√
Mgt) (3b)

ns(t) = ns(0), ni(t) = ni(0) (3c)

nb(t) =
[
M |C(0)|2 + ni(0)ns(0)

]
sin2(

√
Mgt), (3d)

where b(t) ≡ 〈b̂〉t and nb(t) ≡ 〈b̂†b̂〉t. The average pho-
ton numbers in the {âSm

, âIm} are constant, in this ap-
proximation, because each mode’s nb(t)/M contribution
to the sum-frequency mode’s average photon number is
negligible. Equations (3) agree very well with numerical
results for M = 1, 2, and 3 [24]. For any M they reveal a
coherent oscillation between the b̂ mode’s mean field and
the cross correlation in all signal-idler mode pairs, plus
an additional M -independent oscillation in the b̂ mode’s
average photon number from the weak thermal-noise con-
tribution (∝ ni(0)ns(0)), to nb(t).
Optimum receiver design.— Were 〈ĉ†Sm

ĉSm〉 � 1 un-
der both hypotheses, QI’s returned-signal and retained-
idler mode pairs would satisfy the low-brightness condi-
tions needed for Eqs. (3) to apply. Then, when these
mode pairs undergo SFG with the sum-frequency mode
b̂ initially in its vacuum state, b̂’s output state at t =
π/2
√
Mg would be approximately a weak thermal state

(average photon number nT = 〈ĉ†Im ĉIm〉〈ĉ
†
Sm
ĉSm
〉) when

h = 0, or a coherent state (with mean field −i
√
MCp)

embedded in a weak thermal background (average pho-
ton number nT ) when h = 1. Minimum error-probability
discrimination between the two hypotheses, based on
b̂’s output state, is then a single-mode Gaussian mixed-
state problem [24]. Unfortunately, Eq. (1) implies that
〈ĉ†Sm

ĉSm
〉0 = NB � 1 under both hypotheses, violating

the low-brightness condition. When these bright signal
modes undergo SFG, they drive b̂ to an equilibrium state
[47], precluding the desired coherent conversion.

To resolve this NB � 1 problem, we propose a receiver
that uses K cycles of π/2

√
Mg-duration SFG interac-

tions, as shown in Fig. 1. With optimum choices of the
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{rk, εk}, this figure represents the FF-SFG receiver; set-
ting all the {rk, εk} to zero reduces it to the SFG receiver.
We shall describe the FF-SFG receiver, but present per-
formance results for both receivers. It suffices to consider
a single cycle comprised of one SFG interaction, plus the
pre-SFG signal slicing, the post-SFG signal combining,
and the post-SFG photon-counting measurements.

Let {ĉ(k)Sm
, ĉ

(k)
Im
} be the signal-idler mode pairs at the in-

put to the kth cycle for 0 ≤ k ≤ K − 1, with ĉ(0)Sm
= ĉSm

and ĉ
(0)
Im

= ĉIm . A transmissivity η � 1 beam split-
ter taps a small portion of each ĉ

(k)
Sm

mode, yielding a
low-brightness transmitted mode ĉ(k)Sm,1 to undergo a two-

mode squeezing (TMS) operation S(rk) [48], with the ĉ(k)Im

mode, and a high-brightness reflected mode ĉ(k)Sm,2 to be
retained. For the FF-SFG receiver, the rk value (which
depends on h̃k = 0 or 1, the minimum error-probability
decision as to target absence or presence based on the
measurement results from all prior cycles [50]) is cho-
sen to almost purge any phase-sensitive cross correlation
between the {ĉ(k)Sm,1, ĉ

(k)
Im
} mode pairs from the S(rk) op-

eration’s output mode pairs were h̃k a correct decision.
Because S(rk)’s output mode pairs are applied to an SFG
process that converts any mode-pair phase-sensitive cross
correlation to a non-zero mean field for its sum-frequency
(b̂(k)) mode’s output, any significant mean field indicates
that the h̃k decision was wrong. As shown in [24]: (1)
b̂(k) is not entangled with any other SFG output mode;
and (2) each signal-idler mode pair emerging from SFG
is in a Gaussian state. These facts allow us to use the
weak TMS operation S(

√
ηC

(k)
si − rk) to approximate

the SFG operation on each signal-idler mode pair, where
C

(k)
si ≡ 〈ĉ

(k)
Sm
ĉ
(k)
Im
〉.

Following the kth cycle’s SFG operation, we apply the
TMS operation S(−rk) to each signal-idler mode pair.
Under either hypothesis, the number of photons lost by
the signal modes entering the SFG operation matches
the number of photons gained by the b̂(k) mode. The
S(−rk) operation ensures that, when its signal-mode out-
puts are combined with the retained {ĉ(k)Sm,2} modes on a

second transmissivity-η beam splitter, the {ĉ(k)Em
} output

modes contain the same number of photons as the b̂(k)
mode. The photon-number measurements b̂(k)†b̂(k) and∑M

m=1 ĉ
(k)†
Em

ĉ
(k)
Em

then provide outcomes N (k)
b and N

(k)
E

that are substantial when h̃k is incorrect, but negligible
when h̃k is correct. These measurement outcomes are
fed-forward for use in determining h̃k+1, with h̃K being
the receiver’s final decision as to whether the target is
absent or present.

The kth cycle is completed by a TMS operation S(εk),
with εk =

√
η rk, that makes the phase-sensitive cross

correlation of the signal and idler inputs to the (k+1)th
cycle independent of rk. The first-order results for the

Figure 1. Schematic of the FF-SFG receiver. Upper panel:
two successive cycles. Lower panel: the components in the
kth cycle. S(·): two-mode squeezing; SFG: sum-frequency
generation; FF: feed-forward operation.

conditional moments given h = j are [24]:

n(k)s ≡ 〈ĉ(k)†Sm
ĉ
(k)
Sm
〉|h=j = NB (4a)

n
(k)
i ≡ 〈ĉ(k)†Im

ĉ
(k)
Im
〉|h=j = NS (4b)

C
(k)
si |h=j = jCp[1− η(1 +NB)]

k. (4c)

Feed-forward and decision.— All that remains to fully
specify the FF-SFG receiver is to derive the optimum
{rk} and {h̃k} values, and to choose an appropriate value
for K, the number of cycles to be employed. To do
so, we will draw on a connection to Dolinar’s optimum
receiver for binary coherent-state discrimination [41] by
setting rk = 0, to consider the SFG receiver, and omit-
ting the small incoherent contribution to the b̂(k)†b̂(k)

measurement. Then, assuming h = 1, the kth cycle
produces a b̂(k) mode in a coherent state with average
photon number 〈N (k)

b 〉|h=1 = Mλ2k and {ĉ(k)Em
} modes

in iid thermal states with total average photon number
〈N (k)

E 〉|h=1 =Mλ2k, where λk ≡
√
η C

(k)
si |h=1. For η suffi-

ciently small, the h = 1 statistics of N (k) ≡ N (k)
b +N

(k)
E

will match the photon-number statistics of the coherent
state |

√
2Mλk〉. On the other hand, the h = 0 statistics

of N (k) are those of the vacuum state, i.e., N (k) = 0
with probability one. Optimum binary coherent-state
discrimination [41, 43] applied to our problem then gives
rk = r

(k)

h̃k
, where (see Ref. [24] for an intuitive explana-
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tion)

r
(k)

h̃k
=
λk
2

1− (−1)h̃k√
1− exp

[
−2M(

∑k
`=0 λ

2
` − λ2k/2)

]
 .

(5)
Here, h̃k is the j value that maximizes P (k)

h=j [50], where

the prior probabilities for the kth cycle, {P (k)
h=j : j = 0, 1},

are the posterior probabilities of the (k − 1)th cycle that
are obtained from the Bayesian update rule [43, 51],

P
(k)
h=j =

P
(k−1)
h=j PBE(N

(k−1)
b , N

(k−1)
E ; j, r

(k−1)
h̃k−1

)∑1
j=0 P

(k−1)
h=j PBE(N

(k−1)
b , N

(k−1)
E ; j, r

(k−1)
h̃k−1

)
,

(6)
for 1 ≤ k ≤ K − 1, where PBE(N

(k−1)
b , N

(k−1)
E ; j, r

(k−1)
h̃k−1

)

is the conditional joint probability of getting counts
N

(k−1)
b and N

(k−1)
E given that the true hypothesis is j

and rk−1 = r
(k−1)
h̃k−1

. The S(rk−1)-SFG-S(−rk−1) cascade
in the (k − 1)th cycle is designed to make the photon
fluxes that generate N (k−1)

b and N
(k−1)
E much higher if

h̃k−1 6= h than if h̃k−1 = h. Thus the update rule will
flip h̃k to the other hypothesis if too many photons are
counted in the (k − 1)th cycle; otherwise h̃k = h̃k−1 will
prevail.

To determine how many cycles must be run, we reason
as follows. Suppose that h = 1 and we continue to neglect
the small incoherent contribution to the b̂(k)†b̂(k). We
then have that N (K)

T ≡
∑K−1

k=0 N (k) = 2M
∑K−1

k=0 λ2k is
the total average photon number of all the measurements
made in the FF-SFG receiver’s K cycles. To ensure that
the receiver’s final decision, h̃K , as to whether the target
is absent (h̃K = 0) or present (h̃K = 1) is optimum,
two conditions should be satisfied: (1) η is small enough
that the qubit approximations in [24] are valid; and (2)
K is large enough that N (K)

T /N
(∞)
T = 1 − ε, for some

pre-chosen 0 < ε� 1.
Performance.—We begin our performance evaluations

for the FF-SFG and SFG receivers with some asymp-
totic results [24]. For η sufficiently small, the coherent
and incoherent (thermal-state) contributions to N (K)

T are
N

(K)
Tcoh
' (1 − ε)MκNS/NB and N

(K)
Ttherm

' −NS ln(ε)/2,
and the number of cycles employed isK ' − ln(ε)/2ηNB .
Equations (4), which underlie these expressions, are valid
only when NS � 1. So, to get asymptotic results, we let
NS → 0, to drive N (K)

Ttherm
to zero, and we increase the

source’s mode number, M , to keep N
(K)
Tcoh

constant. In
this regime, QI target detection with the FF-SFG and
SFG receivers becomes one of discriminating the coher-

ent state |
√
N

(K)
Tcoh
〉 from the vacuum. Like the case for

the Dolinar receiver [41], the FF-SFG receiver’s error
probability should then approach the Helstrom bound

PH =

[
1−

√
1− exp(−N (K)

Tcoh
)

]
/2, and, like the case

for the Kennedy receiver [40], the SFG receiver’s error-
probability exponent should approach N

(K)
Tcoh

, which, for
ε→ 0, is both the QCB for the preceding coherent-state
discrimination problem and that for QI target detection.

Figure 2. (a) Error probabilities for the SFG, FF-SFG, and
OPA receivers obtained from Monte Carlo simulations, plus
analytical results for coherent-state discrimination with a ho-
modyne receiver, and the Helstrom limit PH when N

(K)
Tcoh

=

MκNS/NB . Parameter values are given in the text. (b)
Error-probability exponents for the SFG and FF-SFG re-
ceivers versus source brightness, NS , withM is chosen to keep
the QI target-detection QCB at (top to bottom) 10−1, 10−2,
or 10−3. Simulations run were 106 for QCB = 10−3 and 105

otherwise.

To explore how closely the FF-SFG and SFG receivers’
error probabilities approach their asymptotic behavior we
performed Monte Carlo simulations using NS = 10−4,
κ = 0.01, NB = 20, η = 0.002, and K = 42. These
parameter values are consistent with the qubit approx-
imation’s validity. We used 105 (for log10M < 7.8) to
106 simulation runs (for log10M ≥ 7.8) to obtain our
error-probability estimates [24]. Figure 2(a) compares
M -dependent simulation results for the error probabili-
ties of the FF-SFG, SFG, and OPA receivers with those
of the homodyne receiver for coherent-state discrimina-
tion and the Helstrom bound with N (K)

Tcoh
= MκNS/NB .

At all M values shown, both proposed receivers outper-
form the OPA receiver, with FF-SFG reception’s perfor-
mance approaching PH . More importantly, our receivers
asymptotically saturate the QCB. Figure 2(b) shows
Monte Carlo results comparing the error-probability ex-
ponents of the SFG and FF-SFG receivers with QI target-
detection’s QCB as a function of source brightness with
M chosen to keep the QCB constant at 10−1, 10−2, or
10−3. Increasing NS increases N (K)

Ttherm
, so Fig. 2(b) shows

our receivers approach QCB performance over a wide
range of noise values.
Discussion.— We have presented a structure for

achieving asymptotically-optimum performance in QI
target detection. Compared to the Schur-transform ap-
proach to optimum mixed-state discrimination, the com-
ponents of our FF-SFG and SFG receivers, albeit chal-
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lenging, have simpler realizations. In particular, the re-
quired SFG can be implemented in an optical cavity or
nonlinear waveguides [52], and its K cycles can be com-
bined on a photonic integrated circuit [53–55]. Feed-
forward operations have been successfully employed to
obtain improved performance in the discrimination of co-
herent states [31–33], mixed states [56], and entangled
states [57]. Furthermore, our receivers have other po-
tential applications, including optimum reception for the
QI communication protocol [58], and quantum state and
channel tomography [59, 60].

Three final points deserve mention. First, our re-
ceiver’s slicing approach is analogous to that in [61],
where it was shown that slicing could be used to achieve
the Holevo capacity for classical information transmis-
sion over a pure-loss channel. Second, recent work [62]
has shown that QI offers a great performance advantage
in target detection in the Neyman-Pearson setting, when
the miss probability, Pr(h̃K 6= h | h = 1), is to be min-
imized subject to a constraint on the false-alarm proba-
bilitiy, Pr(h̃K 6= h | h = 0). The optimum quantum mea-
surement for Neyman-Pearson detection, u(ρ̂1 − ζρ̂0) for
an appropriately chosen real-valued ζ, is identical to that
for minimum error-probability discrimination between ρ̂1
and ρ̂0 when ζ = Pr(h = 0)/Pr(h = 1). Thus, just
as the Dolinar receiver can be initialized to achieve the
Helstrom bound for coherent-state discrimination with
unequal priors and hence for Neyman-Pearson discrim-
ination, so too can our FF-SFG receiver for QI target
detection. Finally, we note that the implementation bur-
den on our FF-SFG receiver can be vastly reduced by
replacing its feed-forward stages with feedback stages,
i.e., we implement only one cycle and feed back its op-
tical outputs to its inputs while using its measurement
outputs to adjust its rk and εk values. Running this feed-
back arrangement through K cycles then yields the same
output as the original feed-forward setup but with only
three squeezers, one SFG stage, and two beam-splitters,
instead of K times those numbers.

This research was supported by AFOSR Grant
No. FA9550-14-1-0052. QZ thanks Aram Harrow for dis-
cussion of the Schur transform.
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