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Information theory quantifies the optimal rates of resource interconversions, usually in terms
of entropies. However, nonadditivity often makes evaluating entropic formulas intractable. In a
few auspicious cases, additivity allows a full characterization of optimal rates. We study uniform
additivity of formulas, which is easily evaluated and captures all known additive quantum formulas.
Our complete characterization of uniform additivity exposes an intriguing new additive quantity
and identifies a remarkable coincidence—the classical and quantum uniformly additive functions
with one auxillary variable are identical.

Entropies tell us how much information is stored in a
system. As a result, the answers to information theoretic
questions are usually found in terms of entropies evalu-
ated on systems arising in optimal protocols. For exam-
ple, the communication capacity of a classical channel
N that maps random variable X to Y is given by the
maximization C(N ) = maxX I(X;Y ), where the mutual
information I(X;Y ) = H(X) +H(Y )−H(XY ) is a lin-
ear combination of entropies [25]. Similarly, the cost of
transmitting a quantum state ρA on system A is its von
Neumann entropy H(A) = − tr ρA log ρA. A noisy quan-
tum communication channel N : A → B can be mathe-
matically extended to an isometry U : A → BE of the
input with an independent and inaccessible environment.
Such a channel can be applied to a state φV A to create
a state ρV BE . More generally, V may have many sub-
systems, and we may use φV1...VnA to create ρV1...VnBE .
We can use such a state to generate an entropic for-
mula: fα(UN ) = maxφV1...VnA

fα(UN , φV1...VnA) with
fα(UN , φV1...VnA) =

∑
s∈P(V1...VnBE) αsH(ρs), where

P(V1...VnBE) ranges over all collections of subsystems
from V1...VnBE, and H(ρs) is the entropy of collection
s. We call the V1...Vn systems auxiliary variables, and
they can a priori have arbitrary, even infinite, dimen-
sions. Most operationally relevant quantities in quantum
information can be expressed as a regularization of such
a formula:

f∞α (N ) = lim
n→∞

1

n
fα
(
N⊗n

)
, (1)

where N⊗n is the n-fold parallel use of channel N . The
auxiliary variables in an entropic formula are usually re-
lated operationally to the structure of optimal protocols;
for example, the optimal distribution X that maximizes
C(N ) = maxX I(X;Y ) to give the classical capacity de-
fines a distribution of capacity-achieving error correcting
codes.

The infinite-dimensional optimization of Eq.(1), which
is called a multi-letter formula, is usually intractable.
In some rare cases additivity allows a substantial sim-

FIG. 1: Using a quantum channel to generate a quantum
state. A noisy quantum channel from input A to output B
can always be thought of as a unitary interaction of the input
with some inaccessible environment E. We can generate a
quantum state from this interaction by creating φV1...VnA and
acting on A with UN , leading to the state ρV1...VnBE = I ⊗
UNφV1...VnAI ⊗ U

†
N .

plification. An entropic formula fα(UN ) is additive if
fα(UN⊗UM) = fα(UN )+fα(UM) for all channelsN and
M. When fα is additive, we have f∞α (UN ) = fα(UN ),
which is called a single-letter formula. There are single-
letter formulas for the classical capacity of a classical
channel [1], the entanglement-assisted capacity of a quan-
tum channel [2], and the quantum capacity of a quantum
channel with access to a special zero-capacity assistance
channel[3]. Furthermore, there are single-letter formu-
las for the classical capacity of an entanglement break-
ing channel [4] and the quantum capacity of degradable
channels [5]. A single-letter formula often leads to a
tractable means of evaluating a quantity, allowing us to
completely characterize the optimal performance for in-
formation transmission and storage.

Many relevant entropic formulas are nonadditive, es-
pecially in the quantum setting[6–10]. Optimal perfor-
mance is thus captured only by a multi-letter formula,
which is intractable to evaluate. Even the capacities
themselves can exhibit nonadditivity, displaying funda-
mentally quantum synergies not present classically [9–
13]. As a result, many basic questions in quantum infor-
mation theory remain open—the classical and quantum
capacities of most channels are unknown, and even decid-
ing if a quantum channel has nonzero quantum capacity
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seems insurmountable [14].
Entropy inequalities express relationships between en-

tropies of different collections of subsystems that are sat-
isfied for all states. Subadditivity of entropy, for example,
tells us that H(A) +H(B)−H(AB) ≥ 0, or equivalently
I(A;B) ≥ 0. Its generalization, strong subadditivity[15],
tells us that conditional mutual information is also posi-
tive:

I(A;B|C) = H(AC) +H(BC)−H(ABC)−H(C) ≥ 0.
(2)

The set of (2n − 1)-dimensional entropy vectors v =
(H(X1), ...H(Xn), ...,H(X1...Xn)) that can be realized
by classical probability distributions on X1...Xn form a
cone, whose study in terms of linear programming was
formalized in [16]. The larger cone of realizable quantum
entropies was studied in [17]. Entropy inequalitites are
the key to proving additivity when it exists.

If fα is an additive formula with one auxiliary variable
[26], for any pair of channelsN ,M and any state φV A1A2

,

there must be a pair of states φ̃Ṽ A1
and φ̂V̂ A2

such that

fα (UN ⊗ UM, φV A1A2
) ≤ fα(UN , φ̃Ṽ A1

) + fα(UM, φ̂V̂ A2
).

(3)

We call such a mapping φV A1A2
→ (φ̃Ṽ A1

, φ̂V̂ A2
) a de-

coupling. In principle, the appropriate decoupling may
depend in an arbitrary way on the channels N ,M and
the state φV A1A2

. In practice, useful decouplings are in-
variably what we call standard decouplings, which have
a very simple form and are described in Fig. 2. Once
we have fixed a decoupling and fα, we can use entropy
inequalities to determine if Eq. (3) is satisfied. When

fα does satisfy Eq. (3) with (φ̃, φ̂) defined by a standard
decoupling D, we say fα is uniformly subadditive with
respect to D. Since we also have fα(UN ⊗UM, φ̃⊗ φ̂) =

fα(UN , φ̃) + fα(UM, φ̂), subadditivity implies that

fα(UN ⊗ UM) = fα(UN ) + fα(UM) (4)

and we call fα uniformly additive with respect to D. All
known proofs of quantum additivity proceed by choosing
a standard decoupling and proving Eq. (3) via entropy
inequalities [2, 3, 18].

We have found all entropic formulas fα that are uni-
formly additive with respect to standard decouplings. We
do this by enumerating all standard decouplings, and us-
ing the linear programming formulation of entropy in-
equalities to determine which fα are uniformly subaddi-
tive for each decoupling. Our approach captures all pre-
viously known examples of additive formulas and more.
This method opens a line of attack on a variety of ques-
tions, from classical multiuser information theory to find-
ing new classes of channels with additive capacities, and
clarifies when and where to expect quantum synergies
like superactivation [11].

FIG. 2: Decoupling is the process of mapping one state
that can be acted on by two channels into two sepa-
rate states, each of which can be acted on by a single
channel use. It maps a state φV1...VnA1A2 to two states,

φ̃Ṽ1...ṼnA1
and φ̂V̂1...V̂nA2

. Here A1 and A2 are the input
spaces to N and M, so that UN ⊗ UM can be applied to
φV1...VnA1A2 to make ρV1...VnB1E1B2E2 , while UN acts on

φ̃Ṽ1...ṼnA1
to make ρ̃Ṽ1...ṼnB1E1

and UM acts on φ̂V̂1...V̂nA2

to make ρ̂V̂1...V̂nB2E2
. For a standard decoupling, the states

φ̃Ṽ1...ṼnA1
and φ̂V̂1...V̂nA2

are constructed from φV1...VnA1A2

as follows. To obtain φ̃Ṽ1...ṼnA1
, we first apply UM to make

φV1...VnA1B2E2 . Given φV1...VnA1B2E2 , we define Ṽi to con-
tain Vi. B2 and E2 are each either assigned to one of the
Ṽi (or perhaps traced out) to generate φ̃Ṽ1...ṼnA1

. We define

φ̂V̂1...V̂nA2
similarly.

H(B)

H(BE)

H(E)

αB

αBE

αE

αBE − αE

αBE − αB

FIG. 3: (Left) Quantum Entropy Cone for two systems. The
entropies of a bipartite quantum state ρBE form a vector
(H(B), H(E), H(BE)). The vectors of entropies that can be
realized by a quantum state lie in a cone. For two systems,
the faces of this cone are implied by strong subadditivity.
This is also true for n = 3 systems, but for n ≥ 4 we do not
know whether the quantum entropy cone lies strictly inside
the cone implied by strong subadditivity. (Right) Additivity
cone. Fixing a decoupling gives an entropy inequality that
implies additivity. We check whether this inequality is satis-
fied by using known entropy inequalites, as expressed by the
quantum entropy cone. We find a cone of coefficients defining
the entropy formulas that are uniformly additive with respect
to the fixed decoupling. The cone above is the additive cone
for zero-auxiliary variable formulas.

Formulas with no auxiliary variables are particularly
simple:

fα(UN , φA) = αBH(B) + αEH(E) + αBEH(BE). (5)

Here we have only one standard decoupling to consider:
φA1A2

→ (φA1
, φA2

). The conditions for uniform addi-
tivity in this case are
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αB + αBE ≥ 0, αE+αBE ≥ 0, (6)

αB + αE + αBE ≥ 0, αBE ≥ 0.

These inequalities define a cone of αs, which we refer
to as a uniform additivity cone. Eq. (6) describes this
cone in terms of its facets, but a cone can equally well be
described in terms of extremal rays: letting

α0 = (1, 0, 0) ≡ H(B), α1 = (0, 1, 0) ≡ H(E) (7)

α2 = (0,−1, 1) ≡ H(B|E), α3 = (−1, 0, 1) ≡ H(E|B),

α satisfies Eq. (6) exactly when α =
∑
i λiαi with λi ≥ 0.

We now argue that Eq (6) captures all uniformly ad-
ditive formulas with no auxiliary variables. To begin, for
a zero auxilliary variable fα, we define

∆∅(α,UN ⊗ UM, φA1A2
) = fα(UN , φA1

) + fα(UM, φA2
)− fα(UN ⊗ UM, φA1A2

)

= αBI(B1;B2) + αEI(E1;E2) + αBEI(B1E1;B2E2),

so that fα is uniformly additive with respect to the stan-
dard decoupling exactly when ∀N ,M, φA1A2

we have
∆∅(α,UN ⊗ UM, φA1A2) ≥ 0. We make use of the al-
ternate characterization of Eq.(6) in terms of extremal
rays, Eq. (7). It is easy to verify that the αs asso-
ciated with each of the extremal rays H(B), H(E),
H(E|B), and H(B|E) lead to positive ∆∅s. For exam-
ple, H(B) corresponds to (αB , αE , αBE) = (1, 0, 0) and
∆∅(α,UN ⊗UM, ρA1A2) = I(B1;B2) ≥ 0, while H(B|E)
corresponds to (αB , αE , αBE) = (0,−1, 1) and gives

∆∅(α,UN ⊗ UM, ρA1A2
) = I(B1E1;B2E2)− I(E1;E2),

which is also positive for all ρA1A2
. H(E) and H(E|B)

follow mutatis mutandis. Eq. (6) is thus a sufficient
condition for uniform additivity. To see that it is also
a necessary condition, we find states (in fact, classical
distributions) p0, p1, p2, p3 and channels N , M such
that

∆∅(α,UN ⊗ UM, p0) = αB + αBE

∆∅(α,UN ⊗ UM, p1) = αE + αBE

∆∅(α,UN ⊗ UM, p2) = αB + αE + αBE

∆∅(α,UN ⊗ UM, p3) = αBE .

This shows that for any α that doesn’t satisfy Eq. (6)
there are states and channels such that ∆∅(α,UN ⊗
UM, p) < 0. Thus, Eq. (6) are both necessary and suffi-
cient for uniform additivity.

Formulas with one auxiliary variable require us to con-
sider multiple decouplings, capturing the choice of Ṽ and
V̂ in the decoupling map D : φV A1A2

→ (φ̃Ṽ A1
, φ̂V̂ A2

). A

standard decoupling always has Ṽ = M̃2V with M̃2 cho-
sen from {∅, B2, E2, B2E2} and V̂ = M̂1V with M̂1 cho-
sen from {∅, B1, E1, B1E1}. We can parametrize these

by (a, b), with a and b running from 0 to 3. We take
advantage of two simplifications that can be made with-
out loss of generality. First, given fα, α = (α∅, αV ) with
α∅ = (αB , αE , αBE) and αV = (αV , αBV , αEV , αBEV ),
we can define f∅α∅ and fVαV such that fα is uniformly
additive with respect to decoupling (a, b) if and only
if f∅α∅ is uniformly additive with respect to the decou-
pling φA1A2 → (φA1 , φA2) and fVαV is uniformly addi-
tive with respect to (a, b). Second, these formulas have
two useful symmetries that reduce the number of decou-
plings we must consider: 1) for any additive formula, we
get a similar additive formula by exchanging B and E
and 2) fVαV with αV = (αV , αBV , αEV , αBEV ) is equiv-
alent via purification of the quantum state to fVα̃V with
α̃V = (αBEV , αEV , αBV , αV ). This leaves only 5 inequiv-
alent decouplings to be considered.

Table I describes the functions fVαV that are uniformly
additive with respect to the 5 inequivalent decouplings.
They are positive linear combinations[27] of the extreme
rays in the corresponding row of the table. The uniformly
additive functions with respect to decoupling (a, b) are
the sum of any f∅α∅ satisfying Eq. (6) and such an fVαV

found from Table I.

We find many familar additive quantities in this way.
For example, maximum output entropy (maxφA

H(B))
satisfies Eq. (6). The quantity −H(B|V ) was shown to
be additive in [18], and later refered to as reverse coher-
ent information[19]. Since H(B) satisfies Eq. (6) and
−H(B|V ) is uniformly additive with respect to multiple
decouplings, so is their sum H(B)−H(B|V ) = I(B;V ),
whose maximization gives the entanglement assisted ca-
pacity.

One extreme ray of the (1, 2) decoupling’s additive
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case (a,b) M̂1 M̃2 equivalents Additive Cone Extreme Rays

1. (3,3) B1E1 B2E2 (0,0)
αV + αBV + αEV ≥ 0, αV + αBV ≥ 0,

αV + αEV ≥ 0, αV ≥ 0

−H(E|BV ),−H(E|V )

−H(B|EV ),−H(B|V )

2. (3,2) B1E1 E2
(2, 3), (3, 1), (1, 3), (1, 0)

(0, 1), (2, 0), (0, 2)
αBV ≤ 0, αV + αBV ≥ 0

−H(BE|V ),±H(B|EV )

−H(B|V )

3. (3,0) B1E1 ∅ (0,3) αEV ≤ 0, αBV ≤ 0 H(E|BV ),−H(E|V ),±H(BE|V )

4. (1,1) B1 B2 (2,2) αEV = 0, αV ≥ 0, αBEV ≥ 0 −H(B|V ), H(E|BV )

5. (1,2) B1 E2 (2,1) αBEV ≥ 0, αV ≥ 0
±[H(EV )−H(BV )]

H(E|BV ),−H(E|V )

TABLE I: Functions fVαV that are uniformly subadditive with respect to the 5 inequivalent standard decouplings. Fixing a
decoupling D, a single-auxiliary variable fα is uniformly subadditive with respect to D exactly when it can be written as a
sum of f∅

α∅ satisfying Eq.6 and fVαV that is a positive linear combination of the extreme rays in the row corresponding to D.
Multiple auxiliary variables are all found similarly.

cone is particularly intriguing:

Icc(N ) = max
φV A

[H(V B)−H(V E)]. (8)

We call this quantity the completely coherent informa-
tion, since its relationship to the coherent information
Icoh(N ) = maxA[H(B)−H(E)] is similar to the relation-
ship between completely positive and positive maps. The
version of this quantity evaluated on states was shown in
[20] to be a lower bound on the communication cost of
exchanging the B and E systems, but it was not realized
that it is additive. We also show that Icc is also an upper
bound for the jointly achievable quantum communication
rate from A to either B or E. We have not found a clear
operational interpretation of this quantity.

We now consider formulas with multiple auxiliary vari-
ables. For concreteness, suppose we have some formula
depending on two auxiliary variables V1 and V2. A stan-
dard decoupling is a mapping from a state φV1V2A1A2

to

two states φ̃Ṽ1Ṽ2A1
and φ̂V̂1V̂2A2

that we get by choosing

to incorporate (or not) B2 and E2 into one of Ṽ1 and Ṽ2
(and similarly for B1, E1 in V̂1 and V̂2). Since Ṽ1 and
Ṽ2 should be non-overlapping, it is necessary to impose
some consistency on the decouplings (a1, b1) and (a2, b2).
These also give rise to a third decoupling, which we call
(a?, b?), that tells us which systems get included in the
joint systems Ṽ1Ṽ2 and V̂1V̂2.

In this case it is possible to separate the variables much
as we did in the single-variable case. Indeed, any fα
with α = (α∅, αV1 , αV2 , αV1V2) [28] is uniformly addi-
tive with respect to decoupling {(a1, b1), (a2, b2)} exactly
when f∅α∅ , fV1

αV1
, fV2

αV2
, and fV1V2

αV1V2
are uniformly additive

with respect to their respective decouplings. The same
is true for more auxiliary variables. For any number of
auxiliary variables, all fα uniformly additive with respect
to standard decouplings can be constructed from Table I
and Eq. (6) [21].

Surprisingly, carrying out the same analysis as above
for classical states and channels yields exactly the same

set of uniformly additive functions for one auxillary vari-
able. This is in spite of the fact that the classical and
quantum entropy cones do not coincide. This coincidence
of uniformly additive functions may explain a well-known
phenomenon: Formulas that solve classical information
theory problems often tend to have corresponding quan-
tum formulas that solve an appropriately coherified ver-
sion of the problem [29]. In these cases, the classical and
quantum problems have a solution for the same reason:
the existence of an appropriately additive formula whose
additivity proofs are formally equivalent. It would be
very nice to formalize this apparent correspondence and
explore its limits.

In some cases, nonadditive formulas can become addi-
tive when evaluated on special classes of channels. For
example, while both the holevo information and mini-
mum output entropy are nonadditive [8], for entangle-
ment breaking channels they become additive. Simi-
larly, while coherent information is nonadditive [6], it
is additive on degradable channels [5]. Understanding
such conditional additivities is an important open ques-
tions, and we are currently exploring the application of
our techniques to finding special classes of channels that
have additive capacities. We have identified a new cri-
terion for the additivity of coherent information: infor-
mational degradability. We say a channel is informa-
tionally degradable if for any input state φV A we have
I(V ;B) ≥ I(V ;E). This class includes degradable chan-
nels. We suspect informational degradability is the only
single-letter entropic constraint on a channel that implies
this additivity. We have also found a set of entropic con-
straints that imply a state is of the c-q form, which should
be useful for studying classical and private capacities of
quantum channels.

We have identified the limits of the techniques used
in all known instances of quantum additivity. There are
some classical formulas that are additive but not uni-
formly additive (e.g., minimum output entropy of a clas-
sical channel). Proving additivity in these cases requires
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knowledge of the optimizing state (in the case of mini-
mum output entropy of a quantum channel, the optimal
state is a pure state, which for classical channels is also
a product state.). One potential path to new quantum
additive formulas beyond what we have found is to better
understand the optimizing state in an entropic formula.
At this point we know of no examples where this can be
done, but they may well exist.
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