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We report on electron spin resonance (ESR) measurements of phosphorus donors localized in a 200 µm2

area below the inductive wire of a lumped element superconducting resonator. By combining quantum limited
parametric amplification with a low impedance microwave resonator design we are able to detect around 2×104

spins with a signal-to-noise ratio (SNR) of 1 in a single shot. The 150 Hz coupling strength between the
resonator field and individual spins is significantly larger than the 1 – 10 Hz coupling rates obtained with typical
coplanar waveguide resonator designs. Due to the larger coupling rate, we find that spin relaxation is dominated
by radiative decay into the resonator and dependent upon the spin-resonator detuning, as predicted by Purcell.

Electron and nuclear spin magnetic resonance are widely
used to characterize a diverse set of paramagnetic materials in
biology, chemistry, and physics [1]. They also play an impor-
tant role in the control and readout of spin qubits as highly
coherent carriers of quantum information [2, 3]. Improving
the sensitivity of spin resonance is an outstanding goal, which
has triggered research on a variety of measurement schemes
such as optical [4, 5], electrical [6–8], and mechanical [9] de-
tection.

Important progress has also been made by inductively cou-
pling spins to superconducting resonators through the mag-
netic dipole interaction [10] and by adopting ideas and tech-
niques from circuit quantum electrodynamics [11, 12]. Strong
collective spin coupling with superconducting resonators and
qubits has been demonstrated in various materials such as ni-
trogen vacancy and P1 centers in diamond [10, 13, 14], rare
earth ions [15], ferromagnets [16], and dopants in silicon [17].
The number of spins involved in most of these experiments is
typically 1010 to 1013, far from the single spin limit. In an
effort to reduce the number of spins and improve ESR sensi-
tivity, remarkable achievements have recently been made by
coupling bismuth donors in silicon to resonators with quality
factors exceeding 105 [18, 19].

In this Letter, we demonstrate a complementary approach to
improve ESR sensitivity that is based on the enhancement of
the single spin coupling strength to the resonator field by using
lumped element resonators [15, 18] with reduced characteris-
tic impedance. Increasing the coupling strength is particu-
larly helpful when only moderate quality factors are achiev-
able. This is often the case in the presence of large mag-
netic fields that are required to achieve spin transitions in the
microwave frequency range for the majority of spin species.
The measurements presented here are performed in magnetic
fields B0 ≈ 180 mT with phosphorus donors in isotopically
purified 28Si, which are representative of the class of spin sys-
tems with a g-factor close to 2. By integrating a Josephson
parametric amplifier (JPA) into the detection chain we demon-
strate the detection of about 2×104 electron spins with a SNR
of 1, which exceeds previously reported sensitivities in phos-
phorus doped silicon by more than two orders of magnitude
[20]. We also measure the dependence of the spin lifetime
T1 on the spin-resonator detuning and find it to be limited by
Purcell decay [21], in accordance with previous observations
[19, 22].

Our experiments take place using the cryogenic setup de-
picted in Fig. 1(a). Measurements are performed using planar

superconducting microwave resonators with low characteris-
tic impedance Z ∼ 8 Ω [see Fig. 1(b)]. The triangular shaped
regions form interdigitated finger capacitors that shunt an in-
ductive wire of length l ≈ 100µm and width w ≈ 2µm,
as shown in Fig. 1(c). The oscillating magnetic field associ-
ated with photons in the resonator is thus strongly confined
in the region below the inductive wire. The resonator is fab-
ricated from a niobium thin film sputtered on top of a 2µm
thick layer of epitaxially grown 28Si uniformly doped dur-
ing growth with 5 × 1015 phosphorus donor atoms per cu-
bic centimeter and with a residual 29Si content of 800 ppm.
The coupling strength g0 between the resonator and indi-
vidual spins is proportional to the oscillating magnetic field
per unit current b1 ≡ B1/I , of which we show the simu-
lated cross-sectional distribution in the spin doped area be-
low the inductive wire [see Fig. 1(f)]. The non-uniform dis-
tribution of B1 together with the resonator’s estimated char-
acteristic impedance Z =

√
L/C ≈ 8 Ω [23] results in

a position-dependent spin-resonator coupling strength g0 =
b1gµBωres/

√
8~Z [see Fig. 1(g)]. Here ωres is the resonator

frequency, g ≈ 2 is the electron g-factor in silicon, and µB is
the Bohr magneton.

The resonator is side-coupled to a coplanar transmission
line that is used for spin control and readout. We apply pulsed
and continuous microwave fields through a highly attenuated
input line and use a linear detection chain to detect the two
field quadratures I(t) and Q(t) of the radiation emitted from
the sample, see Fig. 1(a). A static in-plane magnetic field B0

is applied by a superconducting magnet. With B0 ≈ 180 mT
and low probe powers P ≈ −130 dBm we measure a reso-
nance frequency close to ωres/2π = 4.96 GHz. The resonator
linewidth κ/2π = 1.6 MHz corresponds to a loaded quality
factor of 3100, see Fig. 1(d). The reduction in the transmis-
sion at resonance allows us to distinguish between the internal
loss rate κi/2π = 1.3 MHz and the loss rate due to coupling
to the transmission line κext/2π = 0.3 MHz [28]. The inter-
nal loss rate is most likely limited by magnetic field-induced
losses due to a finite out-of-plane component and by dielectric
losses in the substrate. Even at a constant internal loss rate the
sensitivity could be enhanced further by designing the exter-
nal loss rate to be equal and by using asymmetrically coupled
drive and readout ports.

An essential aspect of our experiments is the incorpo-
ration of a JPA in the detection chain [18]. By pushing
the linear detection efficiency to its ultimate quantum limit,
these amplifiers have recently triggered a paradigm shift
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Figure 1: (a) Schematic of the experimental setup. The output field of the resonator is amplified by a JPA at base temperature, further
amplified by a high-electron mobility transistor (HEMT) amplifier at 3.2 K and demodulated with an IQ mixer at room temperature to record
and process the quadratures I(t) and Q(t) of the signal with FPGA electronics. (b) Optical micrograph of a resonator with low characteristic
impedance Z =

√
L/C ≈ 8 Ω that is side-coupled to a coplanar transmission line for control and readout. Coupling between the spins and

the resonator field occurs below the inductive wire shown with higher magnification in (c). (d) Measurement (blue dots) and Lorentizan fit
(red line) of the resonator transmission. (e) Measurement (blue dots) and Lorentzian fit (red line) of the JPA gain Gω . Measured noise power
spectral density Sω (black dots) in units of photons per Hz per second. (f) Simulated magnetic field distribution per current b1 = B1/I in the
phosphorus doped region underneath the wire. (g) Simulated coupling strengths g0 at three different depths below the wire, as indicated by the
dashed lines in panel (f).

in microwave frequency measurements at mK temperatures
[29, 30], with applications in superconducting [31–33], semi-
conducting [34], and electromechanical systems [35]. The
JPA used in this experiment is based on coupled nonlinear res-
onators and amplifies incoming signals independent of their
phase [36]. The JPA gain, shown as blue dots in Fig. 1(e),
exhibits a Lorentzian shaped frequency dependence (red line)
and is tuned such that the maximum power gain ofG = 22 dB
coincides with the resonator frequency. To characterize the
improvement in the detection efficiency enabled by the JPA
we measure the noise power spectral density at the end of
the detection chain [black dots in Fig. 1(e)]. On top of the
frequency independent noise offset originating from the sec-
ondary amplifier stages, the parametric amplifier causes a
noise rise proportional to its gain [23]. This noise contri-
bution has been demonstrated to arise from vacuum fluctu-
ations at the input of the amplifier [36]. By comparing the
background noise offset Nnoise with the parametrically am-
plified vacuum noise contribution, we approximate the de-
tection efficiency of the amplification chain to be ηamp ≈
1/(1+G/Nnoise) ≈ 59% at ωres. Based on room temperature
measurements of cable attenuations, we estimate a transmis-
sion efficiency ηloss ≈ 50% between the resonator output and
parametric amplifier input. This leads to a combined detection
efficiency of η = ηampηloss ≈ 29% for the entire detection
chain, which is about 60 times larger than the detection effi-
ciency with the JPA turned off.

We probe the phosphorus donors by employing spin echo
measurement techniques. The spins are initially spin polar-
ized due to the large Zeeman field. An initial π/2-pulse is
then applied at frequency ωres to rotate the spins to the equa-
tor of the Bloch sphere, where they precess at the Larmor
frequency for a time τ . A π-pulse is applied to reverse the
phase accumulation from the preceding free evolution inter-
val. The resulting build-up of a large total spin coherence

S−(t) =
∑
i σ

−
i (t), where σ−

i denote spin lowering opera-
tors of individual spins, is known as the spin echo [37]. In the
limit where the effective echo duration 2T ∗

2 is large compared
to the resonator decay time 1/κ, the resonator field a follows
the total spin coherence S− quasi-instantaneously, so that the
two are approximately proportional a(t) ≈ 2S−(t)ḡ/κ with ḡ
being the average coupling strength between the participating
spins and the resonator [18].

We measure the spin echo by detecting the quadratures I(t)
and Q(t) of the resonator output field as shown in Fig. 2(a).
To maximize the SNR we apply a mode-matched filter func-
tion f(t) = 〈I(t)〉/(

∫
dt〈I(t)〉2)1/2 to the time-resolved data

and extract the integrated echo signal Iecho =
∫

dtf(t)I(t)
for each measurement trace recorded in a single shot fashion
with a repetition rate of 0.1 Hz. Here, 〈...〉 corresponds to an
ensemble average over multiple single shot time-traces. The
average 〈I(t)〉 data shown in the inset are in very good agree-
ment with the time-dependent total spin coherence 〈S−(t)〉
(gray line), which we have simulated by taking into account
the inhomogeneous distribution of both the spin transition fre-
quencies and the coupling strengths as illustrated in Fig. 1(f)
and (g) [23]. For the chosen pulse parameters and donor den-
sity the simulated spin echo signal at its maximum is about
〈S−(t = 0)〉 ≈ 75000 as shown in Fig. 2(a). This corre-
sponds to an average of N ≈ 150000 spins contributing to
the echo. While inhomogeneities in the transition frequen-
cies predominantly arise from the non-uniform field B0, the
inhomogeneous coupling strength is caused by the position
dependent field B1. The latter could be improved with further
advances in the resonator design [38].

We first perform magnetic field spectroscopy by measur-
ing the integrated echo signal Iecho as a function of B0. We
observe two spin resonance transitions that are detuned by
4.2 mT, which correspond to the two nuclear spin states of
the phosphorus donor atom. The hyperfine coupling rate
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Figure 2: (a) Measured quadrature signal (dots) together with a
numerical simulation of 〈S−(t)〉 (gray line). The echo duration is
about 2T ∗

2 ≈ 4µs. The data have been taken with the JPA turned
off and by averaging over a thousand single shot time-traces. (b) In-
tegrated echo signal Iecho as a function of magnetic field B0. The
asymmetry in the echo response for the two hyperfine peaks is pre-
dominantly explained by a change in the resonator frequency when
sweeping B0. (c) High resolution measurement of Iecho around the
low field electron spin transition (blue dots) and a Lorentzian fit (red
line). (d) Iecho as a function of π-pulse length τπ . The optimal τπ =
2.4µs. (e) Aecho as a function of delay time τ between the π/2 and
the π-pulse . Data are fit by an exponential decay (red line), with a
best fit of T2 = 1.1 ms.

A/~ = 117.6 MHz =̂ 4.2 mT is in excellent agreement with
the measured splitting. A higher resolution scan over the
lower field transition [Fig. 2(c)] reveals a Lorentzian lineshape
with an inhomogeneous linewidth of about 80 µT, which is
supposedly limited by inhomogeneity in the B0 field and cor-
responds to a dephasing rate Γ/2π = 2.2 MHz. The Zeeman
energy of the spin ensemble is tuned into resonance with ωres

by setting B0 = 175.14 mT.
The optimal π-pulse length is determined by measuring

Iecho as function of τπ . These data are shown in Fig. 2(d)
for a pulse power Ppulse ≈ −77 dBm. The resulting Rabi
oscillations plateau after about half a period due to the in-
homogeneous distribution of coupling strengths in the de-
vice [20]. The maximum echo signal is obtained for τπ =
2.4µs, which we use for the following data sets. We mea-
sure the spin coherence time T2 by varying the time delay
τ between the π/2-pulse and the refocusing π-pulse. For
this particular experiment we average the amplitude Aecho =∫

dtf(t)
√
〈I2(t) +Q2(t)〉 in order to compensate for deco-

herence caused by low frequency magnetic field noise. The
resulting data points exhibit an exponential decay with a best
fit of T2 = 1.1 ms, which is most likely limited by dipolar in-
teractions between neighboring spins leading to instantaneous
diffusion [2].

In order to study the ESR sensitivity and the improvements
enabled by the use of a JPA, we repeatedly measure single
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Figure 3: Characteristic single shot time-traces of the echo signal
(black lines) and an average over 1000 single shot traces (red line)
with the JPA turned off (a) and on (b). (c) - (d) Individual measure-
ment results for the filtered echo signal in the IQ plane (blue dots) in
comparison with the detection noise (red dots). From the distribution
along the I axis we extract a SNR of Ī/∆I = 10 with the JPA turned
on.

shot time-traces of the echo response. From the characteristic
time-traces, shown as black lines in Figs. 3(a) and (b), we im-
mediately see the significant improvements in SNR with the
JPA. With the JPA turned off the echo signal is only resolved
after averaging (red line). The echo signal, however, clearly
exceeds the noise level in single measurement shots when the
JPA is turned on.

We further quantify the SNR by applying the optimal fil-
ter function to the time-resolved data resulting in one pair of
quadratures {I,Q} for each time-trace. We plot 500 such
pairs in the IQ plane (red points) in comparison with mea-
surements of the background noise (blue points), which is
recorded 40µs � T ∗

2 after each spin echo [Figs. 3(c) and
(d)]. The phase reference is chosen such that the echo signal
is entirely in the I quadrature. The I and Q axes are scaled to
correspond to the real and imaginary part of the detected mode
referenced to the output of the cavity. From the standard de-
viation ∆I = 11.1 (1.7) and the mean Ī = 18.6 (17.5) in the
I quadrature we extract a SNR of Ī/∆I = 1.7 (10) with the
JPA turned off (on). The increase in the variations in the Q
quadrature for the echo signal visible in Fig. 3(d) is explained
by slow phase drifts during the time of data acquisition which
is about 2 hours for the data points shown. In addition to the
increased variance in the Q quadrature, we also find that the
I quadrature of the echo signal exhibits larger variations than
the bare detection noise hinting at variations in the number of
spins participating in the echo sequence from measurement to
measurement.

Based on the SNR measurements and the simulated num-
ber of spins N = 150000 that are excited during the spin
echo, we can estimate the ultimate spin sensitivity of the
low impedance resonator. With the JPA on we find an ESR
sensitivity of approximately 1/Nmin ≈ 1/15000. We can
compare this value to the theoretically estimated value of
1/Nmin ≈ g0

√
ηT ∗

2 κext/κ
2 [18], which for our sample pa-

rameters is ∼ 1/10000 and in reasonable agreement with the
measured sensitivity.



4

-1.0 -0.5 0.0 0.5 1.0
0

2

4

6

8

10

12

14

[MHz]

T
1
[s]

(a) (b)

0 10 20 30 40

0.0

0.2

0.4

0.6

0.8

1.0

[s]

I e
ch
o
[norm

.]

δ/2π = 0 MHz
δ/2π = -1.33 MHz

π/2T echoππ

T [s]

T 
1[s

]

I ec
ho

 [n
or

m
.]

δ/2π [MHz]
0 10 20 30 40 -1.0 0 1.0-0.5 0.5

Figure 4: T1 as a function of δ = Ez/~ − ωres. (a) Two char-
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As demonstrated above, the increased ESR sensitivity that
we achieve is predominantly due to the enhanced single spin
coupling strength g0. As predicted by Purcell, the spin–
resonator coupling induces an additional radiative decay chan-
nel for the excited spins with a Purcell enchanced decay rate
ΓP = 4κg20/(κ

2 + 4δ2), where δ = Ez/~ − ωres is the
spin-resonator detuning [39]. As has recently been demon-
strated [19], this decay channel can significantly dominate
over intrinsic T1 decay mechanisms, which were shown many
decades ago to yield lifetimes as long as hours [40]. Acceler-
ation of the spin relaxation rate may be useful for the initial-
ization of spin states in quantum computing protocols.

To investigate the possibility of a Purcell enhancement we
have measured the spin lifetime in a population recovery ex-
periment for various detunings δ. The detuning is kept con-
stant during each experiment by setting the magnetic field B0

accordingly. The spin rotation pulses are applied resonantly

with the spin transition and with powers adjusted to the de-
tunings in order to account for pulse filtering by the resonator.
As depicted in the inset of Fig. 4(a) an initial π-pulse inverts
the spin population. After a variable time T the recovery of
the spin population is probed with a standard Hahn echo se-
quence to determine what fraction of the spins have relaxed
back to the ground state. As expected, the spin population is
well fitted by an exponential function (solid lines) from which
we extract the spin T1. At zero detuning δ = 0 the spin T1 is
about 3 seconds. However, the spin T1 at δ/2π = −1.33 MHz
is measured to be about four times larger. We have repeated
such population recovery measurements for various values of
δ, see Fig. 4(b). A comparison with the expected Purcell life-
time 1/ΓP (red solid line) shows good qualitative agreement
with the data, which suggests that the T1 is limited by Purcell
decay into the resonator. Our measurements are in agreement
with previous measurements of bismuth donors in silicon [19].

In conclusion, we have demonstrated significant improve-
ments in the ESR detection sensitivity of phosphorus donors
in silicon using lithographically defined resonators. This has
been achieved by enhancing the single spin coupling strength
with an optimized resonator design and by employing state-
of-the-art parametric amplification. Further improvements in
the sensitivity could be achieved by reducing the width of the
inductive wire and by increasing the quality factor of the res-
onator. The increased coupling rate of the low impedance res-
onator design allows for significant tuning of the spin relax-
ation rate by taking advantage of the Purcell effect.
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Grant GBMF4535, with partial support from the National
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