
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Interplay between Magnetism, Superconductivity, and
Orbital Order in 5-Pocket Model for Iron-Based

Superconductors: Parquet Renormalization Group Study
Laura Classen, Rui-Qi Xing, Maxim Khodas, and Andrey V. Chubukov

Phys. Rev. Lett. 118, 037001 — Published 20 January 2017
DOI: 10.1103/PhysRevLett.118.037001

http://dx.doi.org/10.1103/PhysRevLett.118.037001


Interplay between magnetism, superconductivity, and orbital order in a 5-pocket
model for iron-based superconductors – a parquet renormalization group study

Laura Classen1,2, Rui-Qi Xing2, Maxim Khodas3,4 and Andrey V Chubukov2

1 Institut für Theoretische Physik,
Universität Heidelberg, 69120 Heidelberg, Germany,

2 School of Physics and Astronomy,
University of Minnesota, Minneapolis, MN 55455, USA,

3 Department of Physics and Astronomy,
University of Iowa, Iowa City, IA 52242, USA,

4 Racah Institute of Physics,
The Hebrew University, Jerusalem 91904, Israel

We report the results of the parquet renormalization group (RG) analysis of the phase diagram
of the most general 5-pocket model for Fe-based superconductors. We use as an input the orbital
structure of excitations near the five pockets made out of dxz, dyz, and dxy orbitals and argue that
there are 40 different interactions between low-energy fermions in the orbital basis. All interactions
flow under RG, as one progressively integrates out fermions with higher energies. We find that
the low-energy behavior is amazingly simple, despite the large number of interactions. Namely,
at low-energies the full 5-pocket model effectively reduces either to a 3-pocket model made of one
dxy hole pocket and two electron pockets, or a 4-pocket model made of two dxz/dyz hole pockets
and two electron pockets. The leading instability in the effective 4-pocket model is a spontaneous
orbital (nematic) order, followed by s+− superconductivity. In the effective 3-pocket model orbital
fluctuations are weaker, and the system develops either s+− superconductivity or stripe SDW. In
the latter case, nematicity is induced by composite spin fluctuations.

Introduction. The interplay between superconduc-
tivity, magnetism, and nematicity is the key physics of
Fe-based superconductors (FeSCs) [1–6]. In some FeSCs,
e.g., 1111 and 122 systems, undoped materials display
a stripe magnetic order below a certain TN and a ne-
matic order at slightly higher temperatures, while super-
conductivity emerges upon doping, when magnetic or-
der gets weaker. In other systems, like 111 LiFeAs and
11 FeSe, superconductivity emerges without long-ranged
magnetism already in undoped systems. Besides, FeSe
displays an orbital order above the superconducting (SC)
Tc [7]. The issue for the theory is to understand whether
these seemingly different behaviors can be understood
within the same framework.

In this communication we report the results of our
analysis, which connects different classes of FeSCs. We
study the competition between superconductivity, mag-
netism, and nematicity in the most generic five-pocket
(5p) model for FeSCs with full orbital content of low-
energy excitations. To do this, we use the machinery of
analytical parquet renormalization group (pRG) [8]. This
approach, along with complementary numerical func-
tional RG [9–12], has been argued [4, 9–17] to be the
most unbiased way to analyze competing orders in an
itinerant electron system.

The 5p model consists of three hole pockets, of which
two are centered at Γ = (0, 0) in the 1Fe Brillouin zone
and one is centered at M = (π, π), and two electron
pockets centered at Y = (0, π) and X = (π, 0) (see the
right panel in Fig. 1). The two Γ-centered hole pockets
are made out of dxz and dyz orbitals, the hole pocket at

M is made out of dxy orbitals. The electron pockets are
made out of dxz(dyz) and dxy orbitals [18, 19].

For such an electronic configuration, there are 40 dif-
ferent 4-fermion interaction terms, allowed by C4 sym-
metry [20] (without the hole pocket at M , this number is
30 [21]). If one departs from the model with only local in-
teractions, the bare values of all 40 interactions are linear
combinations of Hubbard and Hund terms. However, the
40 interactions flow to different values under pRG, which
implies that the system self-generates non-local interac-
tions. The flow of the interactions is obtained by solving
differential equations that encode series of coupled vertex
renormalizations. The running interactions are then used
as input to determine susceptibilities in different chan-
nels. This way one can monitor a simultaneous build-up
of different correlations taking into account their mututal
feedback, which turns out to be crucial in our study.

The main result of pRG analysis is the emergent uni-
versality. It means that 40 microscopic interactions
flow towards a limited number of fixed trajectories (FT),
where the ratios of different interactions become univer-
sal numbers. Each fixed trajectory has a basin of attrac-
tion in the space of bare interaction parameters. This
allows us to explain the rich behaviors of the different
FeSCs within a unifying description. In practical terms
a simultaneous build-up of different correlations holds in
the window of energies between a fraction of W and a
scale comparable to the Fermi energy, EF . At smaller
energies, interactions in different channels evolve inde-
pendent on each other. The range between W and EF
should be wide enough, otherwise the pRG flow ends be-
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FIG. 1: Upper panel: Right – main orbital content of ex-
citations near Fermi surfaces (presented by different colors).
Left – regions of different system behavior of the full 5-pocket
model, indicated by the type of the effective model. In the
ranges marked marked 4p1,2, the dominant interactions are
between fermions near the Γ-centered hole pockets and elec-
tron pockets. In the regions 3p1,2, the dominant interac-
tions at low energies are within the subset of the two elec-
tron pockets and the M = (π, π)-hole pocket. The index 1, 2
distinguishes if interactions involving dxz/dyz or dxy orbital
components on the electron pockets are dominant. For illus-
tration purposes we used the bare model with local Hubbard
and Hund interactions – intraorbital U , interorbital U ′, J
and J ′. We set J = 0.025/NF , J ′ = 0.03/NF , where NF is
the density of states on the FSs (assumed to be equal on all
FSs for simplicity), and varied U and U ′ as two independent
parameters. For this particular choice, 3p2 region does not ex-
ist. Lower panel: Graphic representations of 3p1,2 and 4p1,2

models. Fermionic states, for which interactions become the
largest in the process of pRG flow, are shown by solid lines.

fore the system reaches one of the FTs [22].

Summary of our results. We found four sta-
ble FTs. For the first two stable FTs, the interactions
within the subset of the two Γ-centered hole pockets and
the two electron pockets become dominant, i.e., the 5p
model effectively reduces to the four-pocket model (4p).
For the other two stable FTs, the 5p model reduces to an
effective 3-pocket model (3p) consisting of two electron
pockets and the M -hole pocket. On each of two stable
4p FTs or 3p FTs the system behavior is described by an
even simpler effective model because interactions involv-
ing fermions from either dxz/dyz or dxy orbitals become
dominant. We label these models as 4p1, 3p1, and 4p2,
3p2, respectively. We illustrate the four cases and present
the phase diagram in Fig. 1. We then computed suscep-
tibilities in different channels [23]. We found that the
interplay between spin-density-wave (SDW) magnetism
and superconductivity is the same in all four effective
models. Namely, the SDW susceptibility is the largest at
intermediate energies and pushes SC and orbital suscep-
tibilities up. However, in the process of the pRG flow the
SC susceptibility overtakes the SDW one, and the feed-
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FIG. 2: Two different regions of system behavior indicated
by fixed trajectories of the pRG flow for the toy model with
electron pockets made entirely of dxy, for different values of
U,U ′ (treated as two independent parameters) and J = J ′ =
0.03/NF . In the region labeled as 3p the interactions within
the subset of the two electron pockets and the M = (π, π)-
hole pocket become dominant at low energies. In the region
labeled as 4p interactions involving fermions from the two Γ-
centered hole pockets and the two electron pockets become
dominant.

back from SC fluctuations halts the increase of the SDW
susceptibility (see Fig. 3(b)). As a consequence, already
the undoped system develops superconductivity rather
than SDW magnetism, if indeed the pRG flow runs over
a wide enough range of energies. This result could not be
obtained within RPA and is entirely due to the feedback
from increasing SC fluctuations on the SDW channel.
In all cases superconductivity is of s+− type, with sign
change between the gaps on hole and electron pockets.
In 4p models the susceptibility towards C4-breaking or-
bital order also grows, and its exponent is larger than
that for superconductivity [4], i.e., the system first de-
velops a spontaneous orbital order. In 3p models orbital
fluctuations are much weaker, and orbital order does not
have enough ”space” to develop.

We found that SDW magnetism does develop before
superconductivity and/or orbital order if the FT is not
reached within the range of pRG flow. The type of SDW
order is different for the 3p and the 4p models. In 3p
models SDW order is a C4-breaking stripe order [24, 25],
while in 4p models it is C4 preserving double-Q or-
der [26, 27] (a symmetric combination of (π, 0) and (0, π)
magnetic orders). This last result, in combination with
pRG, implies a clear separation between the magnetic
and orbital scenario for nematicity in FeSCs. Namely,
in 4p models, the SDW scenario for Ising-nematic order
does not work because double-Q SDW preseves the sym-
metry between X and Y directions, and, simultaneously,
orbital fluctuations are strong. In 3p models, orbital fluc-
tuations are weak, and, simultaneously, SDW stripe fluc-
tuations favor vestigial Ising-nematic spin order [28].

In the remainder of this Letter we present the details
of our study. The full analysis of the set of 40 pRG equa-
tions is quite involved, so to demonstrate the separation
into 4p or 3p behavior at low energies, we first analyze a
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toy model, in which we approximate the orbital compo-
sition of the two electron pockets as pure dxy. We then
extend the analysis to the full 5-pocket model.

Toy model with dxy electron pockets. As
we said, the kinetic term describes fermionic excitations
around the five Fermi surfaces, i.e. H = HΓ+HX+HY +
HM . The symmetry-allowed interaction terms contain 14
interactions Ui within the subset of the two electron and
the two Γ-centered hole pockets and 7 interactions Uin
involving fermions near the M -hole pocket, so the total
number of the interactions is 21. We present the Hamil-
tonian and the full set of pRG equations for a generic
dispersion near hole and electron FSs in the Supplemen-
tary Material (SM). The pRG analysis shows that six
interactions flow to zero and five increase with smaller
exponents than the other ten. The pRG flow of the re-
maining ten interactions determines the FTs. We show
these ten interactions in the inset of Fig. 3(a). The pRG
equations for these interactions are (ui = UiNF )

u̇1 = u2
1 + u2

3, u̇1n = u2
1n + u2

3n (1)

u̇2 = 2u2(u1 − u2), u̇2n = 2u2n(u1n − u2n)

u̇3 = 2u3(2u1 − u2 − u5)− 2u3u4 − u3nu5n

u̇3n = 2u3n(2u1n − u2n − u5)− u3nu4n − 2u3u5n

u̇4 = −2u2
4 − 2u2

3 − 2u2
5n, u̇4n = −u2

4n − 2u2
3n − 2u2

5n

u̇5 = −2u2
5 − 2u2

3 − u2
3n,

u̇5n = −2u4u5n − u4nu5n − 2u3u3n

The derivatives are with respect to L = logW/E, where
E is the running scale.

We searched for FTs of Eq. (1) by selecting one di-
vergent interaction (specifically u1 or u1n), writing other
interactions as ui = γiu1, uin = γinu1 (or ui = γiu1n,
uin = γinu1n), and solving the set of equations for
L−independent γi, γin. We found two stable FTs: one
with

u1 =
1

1 + γ2
3

1

L0 − L
, (2)

and γin = γ2 = 0, γ3 = ±
√

15, γ4 = γ5 = 3, and the
other with

u1n =
1

1 + γ2
3n

1

L0 − L
(3)

and γ1 = γ2 = γ3 = γ4 = γ2n = γ5n = 0, γ3n =
±(3 + 2

√
6), γ4n = 2γ5 = −

√
6. In Eqs. (2), (3) L0 is the

scale at which interactions diverge and the system devel-
ops a long-range order, as we show below. For the first
stable FT all γin involving the M pocket vanish, so the
5-pocket model effectively reduces to the 4p model. For
the second stable FT the situation is the opposite – inter-
actions involving the two Γ-centered hole pockets vanish
compared to other interactions, i.e., the 5p model effec-
tively reduces to the 3p model. We checked the stability
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FIG. 3: (a) Representative RG flow towards the 4p FT in
the toy model for the interactions u1 and u1n. The inset
shows the 10 relevant interactions of the toy model, where
double lines represent electron pockets, wavy lines the M -
centered hole pocket and solid single lines the Γ-centered hole
pockets. Bare values are U = 0.08/NF , U ′ = 0.12/NF , J =
J ′ = 0.03/NF . The RG parameter L is logW/E, where W
is the bandwidth and E is running energy/temperature. The
system undergoes an instability into an ordered state (SDW,
SC, or orbital order) at L = L0. (b) Corresponding flow of
the SDW, SC s+− and orbital susceptibilities. Near L = L0

the SC and the orbital susceptibilities keep increasing, while
the SDW susceptibility remains finite. Insert: orbital and SC
susceptibilities near the end of the flow.

of the 4p FT and the 3p FT by expanding around them
and verified that all eigenvalues are negative. Whether
the system flows to one FT or the other is determined by
the bare values of the interactions (see Fig.2).

We next use the running interactions as inputs and
compute the susceptibilities in different channels, χj .
We describe the computational procedure in the SM and
here list the results. The potentially divergent parts of
the susceptibilities in SC and SDW channels are χi ∝
(L0 − L)2βi−1 (i = SDW, SC). Along 4p FT and 3p FT,

the exponents are β
(4p)
SDW = 0.30, β

(4p)
SC = 0.86, β

(3p)
SDW =

0.43, β
(3p)
SC = 0.72. We see that in both cases βSC > 1/2

while βSDW < 1/2, i.e. χSC diverges at L = L0, while
χSDW remains finite, despite that it was the largest at
the beginning of the pRG flow. This implies that the
system develops SC order but not SDW order. We show
the flow of the susceptibilities in Fig. 3(b). For both 4p
and 3p models, we found that the largest βSC > 0 cor-
responds to the s+− gap structure, with opposite sign of
the gap on hole and electron pockets [29]

We also analyzed the susceptibility χP in the d-wave
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Pomeranchuk channel. An instability in this channel
leads to spontaneous orbital order [4, 6], i.e., non-equal
densities of fermions on dxz and dyz orbitals. For the

4p model we found that β
(4p)
P = 1 is larger than β

(4p)
SC ,

i.e., orbital order can precede the SC transition [4]. We
found no dxz/dyz orbital order for the 3p model because
the electron and the M pockets have dxy character [30].

Full 5-pocket model. The analysis of the full 5-
pocket model with dxz/dxy and dyz/dxy orbital content
of the electron pockets is more involved as one has to
analyze the set of 40 coupled differential equations for
the interactions (see SM). We searched for FTs with the
same procedure as in the toy model. Amazingly enough,
we found much the same behavior. Namely, the 5p model
effectively becomes either a 4p or a 3p model. The new
feature, not present in the toy model, is that in each case
there are now two stable FTs, on which the system behav-
ior is described by even more restricted 3p1,2 and 4p1,2

models. For 3p1 and 4p1 models interactions involving
fermions from dxz (dyz) orbitals on the electron pockets
become dominant, for 3p2 and 4p2 models interactions
of dxy orbitals on the electron pockets become dominant.
We verified that these four FTs are stable with respect to
small deviations. We show the phase diagram in Fig. 1.

The interplay between SDW and SC is the same in
all four effective models and is similar to that in the toy
model. Namely, the SDW susceptibility is the largest at
the beginning, but in the process of the flow SC suscepti-
bility diverges faster, and the feedback from SC fluctua-
tions halts the growth of SDW susceptibility. As a result,
even at zero doping the system develops s+− SC order
but no SDW order. Orbital fluctuations are, however,
different in 4p and 3p models, again in similarity to the
toy model. If the pRG flow is towards 4p1 or 4p2 mod-
els, orbital fluctuations also get strong and χP diverges
with the largest exponent, i.e., the system develops a
spontaneous orbital order prior to SC [32]. If the flow is
towards 3p model, orbital fluctuations are much weaker
and do not develop for not too large W/EF . If EF is
larger than E0 ∼We−L0 , the pRG flow ends before χSC
and/or χP wins over χSDW . In this situation, the sys-
tem develops SDW order at smaller doping and SC order
at larger dopings [22]. For the 4p model an SDW order
is a double-Q order, maintaining the symmetry between
X and Y directions[26, 27], while for the 3p model SDW
order is a stripe, breaking this symmetry. [24, 25]. Com-
bining this with pRG results, we find that, if the pRG
flow is towards one of the two 4p models, the nematicity
emerges as a spontaneous orbital order. If the flow is to-
wards one of the 3p models, the nematicity emerges due
to stripe fluctuations as a composite Ising-nematic spin
order.

Conclusions and applications to FeSCs. In this
Letter we analyzed the competition between SDW, SC,
and orbital order in the full 5-pocket model for FeSCs.

We used pRG techniques and included into consideration
the orbital composition of hole and electron pockets in
terms of dxz, dyz, and dxy orbitals. We found that the
system behavior is amazingly simple – depending on ini-
tial values of the interactions and quasiparticle masses
the system flows to one of four stable FTs. For two of
these FTs, the system behavior at low energies is the
same as if the the M-pocket was absent (4p model), for
the other two the system behavior is the same as if the
two Γ-centered hole pockets were absent (3p model).

Our results have several implications for FeSCs. First,
the pRG analysis shows that SC order may develop in-
stead of long-ranged magnetism already in undoped ma-
terials, not only when SDW order is destroyed by dop-
ing. This is consistent with the behavior in LiFeAs and
FeSe [33]. In systems with smaller regions of the pRG
flow (larger bare interactions or larger EF ) SDW order
develops first, and SC develops only upon doping. Sec-
ond, pRG analysis shows that in 4p models orbital order
develops first, SC develops at a lower T , and SDW or-
der does not develop down to T = 0. This is consistent
with the observed behavior in FeSe at ambient pressure
[7]. Third, in 4p models, nematicity is due to orbital
order, while in 3p model it is of magnetic origin (com-
posite Ising-nematic order). Whether the system flows
towards 3p or 4p effective model at low energies depends
on microscopic interactions (see Figs. 1, 2) as well as the
parameters of fermionic dispersions (see SM).

The phase diagram in Fig. 1 describes the behavior
found in all four families of FeSCs – 1111, 122, 111 and
11 systems, and in this respect our findings provide a
unified description of the competition between SDW, SC,
and orbital orders in all FeSCs.
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