This is the accepted manuscript made available via CHORUS. The article has been published as:

Interplay between Magnetism, Superconductivity, and Orbital Order in 5-Pocket Model for Iron-Based Superconductors: Parquet Renormalization Group Study
Laura Classen, Rui-Qi Xing, Maxim Khodas, and Andrey V. Chubukov
Phys. Rev. Lett. 118, 037001 — Published 20 January 2017
DOI: 10.1103/PhysRevLett.118.037001
Interplay between magnetism, superconductivity, and orbital order in a 5-pocket model for iron-based superconductors – a parquet renormalization group study

Laura Classen1,2, Rui-Qi Xing2, Maxim Khodas3,4 and Andrey V Chubukov2

1 Institut für Theoretische Physik, Universität Heidelberg, 69120 Heidelberg, Germany,
2 School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA,
3 Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242, USA,
4 Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel

We report the results of the parquet renormalization group (RG) analysis of the phase diagram of the most general 5-pocket model for Fe-based superconductors. We use as an input the orbital structure of excitations near the five pockets made out of d_{xz}, d_{yz}, and d_{xy} orbitals and argue that there are 40 different interactions between low-energy fermions in the orbital basis. All interactions flow under RG, as one progressively integrates out fermions with higher energies. We find that the low-energy behavior is amazingly simple, despite the large number of interactions. Namely, at low-energies the full 5-pocket model effectively reduces either to a 3-pocket model made of one d_{xy} hole pocket and two electron pockets, or a 4-pocket model made of two d_{xz}/d_{yz} hole pockets and two electron pockets. The leading instability in the effective 4-pocket model is a spontaneous orbital (nematic) order, followed by $s^{+−}$ superconductivity. In the effective 3-pocket model orbital fluctuations are weaker, and the system develops either $s^{+−}$ superconductivity or stripe SDW. In the latter case, nematicity is induced by composite spin fluctuations.

Introduction. The interplay between superconductivity, magnetism, and nematicity is the key physics of Fe-based superconductors (FeSCs) [1–6]. In some FeSCs, e.g., 1111 and 122 systems, undoped materials display a stripe magnetic order below a certain T_N and a nematic order at slightly higher temperatures, while superconductivity emerges upon doping, when magnetic order gets weaker. In other systems, like 111 LiFeAs and 11 FeSe, superconductivity emerges without long-ranged magnetism already in undoped systems. Besides, FeSe displays an orbital order above the superconducting (SC) T_c [7]. The issue for the theory is to understand whether these seemingly different behaviors can be understood within the same framework.

In this communication we report the results of our analysis, which connects different classes of FeSCs. We study the competition between superconductivity, magnetism, and nematicity in the most generic five-pocket (5p) model for FeSCs with full orbital content of low-energy excitations. To do this, we use the machinery of analytical parquet renormalization group (pRG) [8]. This approach, along with complementary numerical functional RG [9–12], has been argued [13] to be the most unbiased way to analyze competing orders in an itinerant electron system.

The 5p model consists of three hole pockets, of which two are centered at $\Gamma = (0,0)$ in the 1Fe Brillouin zone and one is centered at $M = (\pi, \pi)$, and two electron pockets centered at $Y = (0, \pi)$ and $X = (\pi, 0)$ (see the right panel in Fig. 1). The two T-centered hole pockets are made out of d_{xz} and d_{yz} orbitals, the hole pocket at M is made out of d_{xy} orbitals. The electron pockets are made out of $d_{xz}(d_{yz})$ and d_{xy} orbitals [18–19].

For such an electronic configuration, there are 40 different 4-fermion interaction terms, allowed by C_4 symmetry [20] (without the hole pocket at M, this number is 30 [21]). If one departs from the model with only local interactions, the bare values of all 40 interactions are linear combinations of Hubbard and Hund terms. However, the 40 interactions flow to different values under pRG, which implies that the system self-generates non-local interactions. The flow of the interactions is obtained by solving differential equations that encode series of coupled vertex renormalizations. The running interactions are then used as input to determine susceptibilities in different channels. This way one can monitor a simultaneous build-up of different correlations taking into account their mutual feedback, which turns out to be crucial in our study.

The main result of pRG analysis is the emergent universality. It means that 40 microscopic interactions flow towards a limited number of fixed trajectories (FT), where the ratios of different interactions become universal numbers. Each fixed trajectory has a basin of attraction in the space of bare interaction parameters. This allows us to explain the rich behaviors of the different FeSCs within a unifying description. In practical terms a simultaneous build-up of different correlations holds in the window of energies between a fraction of W and a scale comparable to the Fermi energy, E_F. At smaller energies, interactions in different channels evolve independent on each other. The range between W and E_F should be wide enough, otherwise the pRG flow ends be-
FIG. 1: Upper panel: Right – main orbital content of excitations near Fermi surfaces (presented by different colors). Left – regions of different system behavior of the full 5-pocket model, indicated by the type of the effective model. In the ranges marked 4p1,2, the distance interactions are between fermions near the Γ-centered hole pockets and electron pockets. In the region 3p1,2, the dominant interactions at low energies are within the subset of the two electron pockets and the $M = (\pi, \pi)$-hole pocket. The index 1,2 distinguishes if interactions involving d_{xz}/d_{yz} or d_{xy} orbital components on the electron pockets are dominant. For illustration purposes we used the bare model with local Hubbard and Hund interactions – intraorbital U, interorbital U', J and J'. We set $J = 0.025/N_F$, $J' = 0.03/N_F$, where N_F is the density of states on the FSs (assumed to be equal on all FSs for simplicity), and varied U and U' as two independent parameters. For this particular choice, 3p2 region does not exist. Lower panel: Graphic representations of 3p1,2 and 4p1,2 models. Fermionic states, for which interactions become the largest in the process of pRG flow, are shown by solid lines.

fore the system reaches one of the FTs.

Summary of our results. We found four stable FTs. For the first two stable FTs, the interactions within the subset of the two Γ-centered hole pockets and the two electron pockets become dominant, i.e., the 5p model effectively reduces to the four-pocket model (4p). For the other two stable FTs, the 5p model reduces to an effective 3-pocket model (3p) consisting of two electron pockets and the M-hole pocket. On each of two stable 4p FTs or 3p FTs the system behavior is described by an even simpler effective model because interactions involving fermions from either d_{xz}/d_{yz} or d_{xy} orbitals become dominant. We label these models as 4p1, 3p1, and 4p2, 3p2, respectively. We illustrate the four cases and present the phase diagram in Fig. 1. We then computed susceptibilities in different channels. We found that the interplay between spin-density-wave (SDW) magnetism and superconductivity is the same in all four effective models. Namely, the SDW susceptibility is the largest at intermediate energies and pushes SC and orbital susceptibilities up. However, in the process of the pRG flow the SC susceptibility overtakes the SDW one, and the feedback from SC fluctuations halts the increase of the SDW susceptibility (see Fig. 3(b)). As a consequence, already the undoped system develops superconductivity rather than SDW magnetism, if indeed the pRG flow runs over a wide enough range of energies. This result could not be obtained within RPA and is entirely due to the feedback from increasing SC fluctuations on the SDW channel. In all cases superconductivity is of s^+ type, with sign change between the gaps on hole and electron pockets. In 4p models the susceptibility towards C_4-breaking orbital order also grows, and its exponent is larger than that for superconductivity, i.e., the system first develops a spontaneous orbital order. In 3p models orbital fluctuations are much weaker, and orbital order does not have enough "space" to develop.

We found that SDW magnetism does develop before superconductivity and/or orbital order if the FT is not reached within the range of pRG flow. The type of SDW order is different for the 3p and the 4p models. In 3p models SDW order is a C_4-breaking stripe order, while in 4p models it is C_4 preserving double-Q order (a symmetric combination of $(\pi, 0)$ and $(0, \pi)$ magnetic orders). This last result, in combination with pRG, implies a clear separation between the magnetic and orbital scenario for nematicity in FeSCs. Namely, in 4p models, the SDW scenario for Ising-nematic order does not work because double-Q SDW preserves the symmetry between X and Y directions, and, simultaneously, orbital fluctuations are strong. In 3p models, orbital fluctuations are weak, and, simultaneously, SDW stripe fluctuations favor vestigial Ising-nematic spin order.

In the remainder of this Letter we present the details of our study. The full analysis of the set of 40 pRG equations is quite involved, so to demonstrate the separation into 4p or 3p behavior at low energies, we first analyze a
toy model, in which we approximate the orbital composition of the two electron pockets as pure d_{xy}. We then extend the analysis to the full 5-pocket model.

Toy model with d_{xy} electron pockets. As we said, the kinetic term describes fermionic excitations around the five Fermi surfaces, i.e., $H = H^T + H^X + H^Y + H^M$. The symmetry-allowed interaction terms contain 14 interactions U_i within the subset of the two electron and the two Γ-centered hole pockets and 7 interactions U_{in} involving fermions near the M-hole pocket, so the total number of the interactions is 21. We present the Hamiltonian and the full set of pRG equations for a generic dispersion near hole and electron FSs in the Supplementary Material (SM). The pRG analysis shows that six interactions flow to zero and five increase with smaller exponents than the other ten. The pRG flow of the remaining ten interactions determines the FTs. We show these ten interactions in the inset of Fig. 3(a). The pRG equations for these interactions are $(u_i = U_i\beta F)$

$$
\dot{u}_1 = u_1^2 + u_2^2, \quad \dot{u}_1n = u_1n^2 + u_3n^2 \tag{1}
$$

$$
\dot{u}_2 = 2u_2(u_1 - u_2), \quad \dot{u}_2n = 2u_2n(u_1n - u_2n) \nonumber
$$

$$
\dot{u}_3 = 2u_3(2u_1 - u_2 - u_5) - 2u_3u_4 - u_3n, \quad \dot{u}_3n = 2u_3n(2u_1n - u_2n - u_5) - u_3n, \quad \dot{u}_4 = 2u_2^2 - 2u_3^2 - 2u_5^2, \quad \dot{u}_4n = -2u_2^2 - u_3^2 - 2u_5^2 \nonumber
$$

$$
\dot{u}_5 = 2u_5^2 - 2u_3^2, \quad \dot{u}_5n = 2u_5n^2 - 2u_3u_5n \nonumber
$$

The derivatives are with respect to $L = \log W/E$, where E is the running scale.

We searched for FTs of Eq. (1) by selecting one divergent interaction (specifically u_1 or u_1n), writing other interactions as $u_i = \gamma_iu_1$, $u_{in} = \gamma_{in}u_1$, and solving the set of equations for L-independent γ_i, γ_{in}. We found two stable FTs: one with

$$
u_1 = \frac{1}{1 + \gamma^2} \frac{1}{L_0 - L}, \tag{2}
$$

and $\gamma_{in} = \gamma_2 = 0$, $\gamma_3 = \pm \sqrt{15}, \gamma_4 = \gamma_5 = 3$, and the other with

$$
u_1n = \frac{1}{1 + \gamma_{3n}^2} \frac{1}{L_0 - L}, \tag{3}
$$

and $\gamma_1 = \gamma_2 = \gamma_3 = \gamma_4 = \gamma_5 = 0$, $\gamma_{3n} = \pm (3 + 2\sqrt{6}), \gamma_{4n} = 2\gamma_5 = -\sqrt{6}$. In Eqs. (2), (3) L_0 is the scale at which interactions diverge and the system develops a long-range order, as we show below. For the first stable FT all γ_{in} involving the M pocket vanish, so the 5-pocket model effectively reduces to the 4p model. For the second stable FT the situation is the opposite — interactions involving the two Γ-centered hole pockets vanish compared to other interactions, i.e., the 5p model effectively reduces to the 3p model. We checked the stability of the 4p FT and the 3p FT by expanding around them and verified that all eigenvalues are negative. Whether the system flows to one FT or the other is determined by the bare values of the interactions (see Fig.2).

We next use the running interactions as inputs and compute the susceptibilities in different channels, χ_j. We describe the computational procedure in the SM and here list the results. The potentially divergent parts of the susceptibilities in SC and SDW channels are $\chi_i \propto (L_0 - L)^{2\beta_i - 1}$ (i = SDW, SC). Along 4p FT and 3p FT, the exponents are $\beta_{SDW}^{(4p)} = 0.30, \beta_{SDW}^{(3p)} = 0.86, \beta_{SC}^{(3p)} = 0.43, \beta_{SC}^{(3p)} = 0.67$. We see that in both cases $\beta_{SC} > 1/2$ while $\beta_{SDW} < 1/2$, i.e. χ_{SC} diverges at $L = L_0$, while χ_{SDW} remains finite, despite that it was the largest at the beginning of the pRG flow. This implies that the system develops SC order but not SDW order. We show the flow of the susceptibilities in Fig. 3(b). For both 4p and 3p models, we found that the largest $\beta_{SC} > 0$ corresponds to the s^+ gap structure, with opposite sign of the gap on hole and electron pockets [25].

We also analyzed the susceptibility χ_F in the d-wave
Pomeranchuk channel. An instability in this channel leads to spontaneous orbital order \[\delta_{\text{orb}}\] and/or SC order due to orbital content of the electron pockets is more involved as one has to analyze the set of 40 coupled differential equations for the interactions (see SM). We searched for FTs with the same procedure as in the toy model. Amazingly enough, we found much the same behavior. Namely, the 5p model effectively becomes either a 4p or a 3p model. The new feature, not present in the toy model, is that in each case there are now two stable FTs, on which the system behavior is described by even more restricted effective models. For 3p1 and 4p1 models interactions involving fermions from \(d_{xz}(d_{yz})\) orbitals on the electron pockets become dominant, for 3p2 and 4p2 models interactions of \(d_{xy}\) orbitals on the electron pockets become dominant. We verified that these four FTs are stable with respect to small deviations. We show the phase diagram in Fig. 1.

The interplay between SDW and SC is the same in all four effective models and is similar to that in the toy model. Namely, the SDW susceptibility is the largest at the beginning, but in the process of the flow SC susceptibility diverges faster, and the feedback from SC fluctuations halts the growth of SDW susceptibility. As a result, even at zero doping the system develops \(s^+\) SC order but no SDW order. Orbital fluctuations are, however, different in 4p and 3p models, again in similarity to the toy model. If the pRG flow is towards 4p1 or 4p2 models, orbital fluctuations also get strong and \(\chi_P\) diverges with the largest exponent, i.e., the system develops a spontaneous orbital order prior to SC [32]. If the flow is towards 3p model, orbital fluctuations are much weaker and do not develop for not too large \(W/E_F\). If \(E_F\) is larger than \(E_0 \sim W e^{-K_0}\), the pRG flow ends before \(\chi_{\text{SC}}\) and/or \(\chi_P\) wins over \(\chi_{\text{SDW}}\). In this situation, the system develops SDW order at smaller doping and SC order at larger dopings [22]. For the 4p model an SDW order is a double-Q order, maintaining the symmetry between \(X\) and \(Y\) directions [26, 27], while for the 3p model SDW order is a stripe, breaking this symmetry. [24, 25]. Combining this with pRG results, we find that, if the pRG flow is towards one of the 4p models, the nematicity emerges as a spontaneous orbital order. If the flow is towards one of the 3p models, the nematicity emerges due to stripe fluctuations as a composite Ising-nematic order.

Conclusions and applications to FeSCs. In this Letter we analyzed the competition between SDW, SC, and orbital order in the full 5-pocket model for FeSCs. We used pRG techniques and included into consideration the orbital composition of hole and electron pockets in terms of \(d_{xz}, d_{yz}\), and \(d_{xy}\) orbitals. We found that the system behavior is amazingly simple – depending on initial values of the interactions and quasiparticle masses the system flows to one of four stable FTs. For two of these FTs, the system behavior at low energies is the same as if the the M-pocket was absent (4p model), for the other two the system behavior is the same as if the two \(\Gamma\)-centered hole pockets were absent (3p model).

Our results have several implications for FeSCs. First, the pRG analysis shows that SC order may develop instead of long-ranged magnetism already in undoped materials, not only when SDW order is destroyed by doping. This is consistent with the behavior in LiFeAs and FeSe [33]. In systems with smaller regions of the pRG flow (larger bare interactions or larger \(E_F\)) SDW order develops first, and SC develops only upon doping. Second, pRG analysis shows that in 4p models orbital order develops first, SC develops at a lower \(T\), and SDW order does not develop down to \(T = 0\). This is consistent with the observed behavior in FeSe at ambient pressure [1]. Third, in 4p models, nematicity is due to orbital order, while in 3p model it is of magnetic origin (composite Ising-nematic order). Whether the system flows towards 3p or 4p effective model at low energies depends on microscopic interactions (see Figs. 1, 2) as well as the parameters of fermionic dispersions (see SM).

The phase diagram in Fig. 1 describes the behavior found in all four families of FeSCs – \(1111\), \(122\), \(111\) and \(11\) systems, and in this respect our findings provide a unified description of the competition between SDW, SC, and orbital orders in all FeSCs.

We acknowledge with thanks the discussions with E. Berg, L. Boeri, S. Borisenko, P. Coleman, R. Fernandes, C. Honerkamp, D-H Lee, W. Metzner, A. Nevedomsky, D. Podolsky, M. Scherer, Q. Si, R. Thomale, A-M Tremblay, O. Vafek, C. Varma, and Fa Wang. L.C. thanks the School of Physics and Astronomy of the University of Minnesota for hospitality during this work and acknowledges funding by the Studienstiftung des deutschen Volkes and the HGSFP at Heidelberg University. A.C. is supported by the Office of Basic Energy Sciences, U.S. Department of Energy, under award DE-SC0014402. MK is supported by the Israel Science Foundation ISF, Grant No. 1287/15 and NSF DMR-1506668.
