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We show that in presence of a deformable lattice potential, the nature of the disorder-driven metal-
insulator transition (MIT) is fundamentally changed with respect to the non-interacting (Anderson)
scenario. For strong disorder, even a modest electron-phonon interaction is found to dramatically
renormalize the random potential, opening a mobility gap at the Fermi energy. This process,
which reflects disorder-enhanced polaron formation, is here given a microscopic basis by treating
the lattice deformations and Anderson localization effects on the same footing. We identify an
intermediate ”bad insulator” transport regime which displays resistivity values exceeding the Mott-
Ioffe-Regel limit and with a negative temperature coefficient, as often observed in strongly disordered
metals. Our calculations reveal that this behavior originates from significant temperature-induced
rearrangements of electronic states due to enhanced interaction effects close to the disorder-driven
MIT.

Introduction.— Sufficiently strong disorder typically
leads to the formation of bound electronic states. This
physical process – Anderson localization – is by now
well understood in the noninteracting limit [1, 2]. Still,
even early experimental and theoretical studies stressed
[3] that omnipresent interaction effects cannot be disre-
garded, although they proved difficult to tackle. From
the theoretical point of view, the pitfall of conventional
weak-coupling theories has been the challenge in incor-
porating the strong interaction effects at the same level
as disorder, especially in compounds with local mag-
netic moments and various Mott systems. The theoreti-
cal landscape changed dramatically following the rise of
Dynamical Mean-Field Theory (DMFT) ideas [4], which
provided a new perspective. Several intriguing phenom-
ena, such as disorder-driven non-Fermi liquid behavior
[5], glassy dynamics of electrons [6], and even the physics
of Mott-Anderson transitions [7] have been captured,
with focus on systems with strong electronic correlations.

Many other materials, including the famous A15 com-
pounds [8], as well as ”phase-changing” amorphous alloys
[9], can be experimentally tuned through disorder-driven
MITs [10, 11], but they often do not display [3] strong
electronic correlations of the Mott type [7]. In many such
systems, transport on the metallic side is dominated by
conventional electron-phonon scattering, leading to fa-
miliar linear resistivity at ambient temperatures. This
behavior is modified as disorder increases, leading to a
change of sign in the temperature coefficient of resistivity
(TCR), and eventually a crossover to the insulating be-
havior. While the precise mechanism has long remained
a puzzle [3], one thing is clear: The relevant transport
processes must reflect a nontrivial interplay of the dy-

namical lattice deformations and disorder.

Soon after the discovery of localization, Anderson him-
self [12] suggested that in real systems lattice defor-
mations could dramatically affect the random poten-
tial, possibly leading to a gap opening on the insulat-
ing side. Ramakrishnan [3] subsequently argued that, as
soon as translational invariance is lost, a direct Hartree-
type electron-phonon interaction arises that can strongly
renormalize the disorder, reminiscent of charged impurity
screening by Coulomb interactions; in contrast with the
Coulomb case, however, the lattice deformations should
enhance (i.e. anti-screen) the effects of disorder. While
these early ideas and subsequent works [13–15] strongly
emphasized the very significant role of lattice deforma-
tions in disordered materials, so far no systematic theory
has been put forward that can provide a picture of the
resulting MIT.

In this Letter we present the conceptually simplest the-
ory of disorder-driven MITs, treating Anderson localiza-
tion at the same level as the electron-phonon interac-
tion. This is achieved by blending Typical Medium The-
ory (TMT) for Anderson localization [16], and Dynami-
cal Mean-Field Theory [4] to tackle lattice deformations.
The accuracy of the former has been validated by ap-
propriate cluster extensions, showing it to capture most
trends for Anderson transitions [17, 18]. Careful sys-
tematic studies have also shown the DMFT approach to
the electron-phonon problem totally capable of captur-
ing non-perturbative polaronic effects, describing both
incoherent self-trapping and coherent quasiparticle prop-
erties [19–23]. In clean systems polaron formation occurs
only at very strong coupling, uncharacteristic of typical
metals. We find that the situation is dramatically differ-
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ent in presence of sufficient disorder. Here, very pro-
nounced disorder-induced lattice deformations arise in
the vicinity of the MIT even in the most common cases
of weak/moderate electron-phonon coupling, dominating
most observables. It is precisely on such experimentally
relevant region that we concentrate below.

Model and methods.— We study the following disor-
dered Holstein model

H = −t
∑
〈ij〉

c†i cj +
∑
i

εic
†
i ci − g

∑
i

c†i ciXi +Hph (1)

where c†i (ci) are creation (annihilation) operators for
electrons moving on a lattice of sites i with transfer in-
tegral t. The site energies εi are randomly chosen from
a uniform distribution of width 2W , P0(εi) = θ(W 2 −
ε2i )/(2W ). In addition to the random potential, the elec-
trons interact locally with dispersionless phonons of fre-

quency ω0 =
√
K/M described by Hph =

∑
i
KX2

i

2 +
P 2

i

2M .
The strength of the electron-phonon coupling is measured
by the dimensionless parameter λ = g2/(2KD), with D
the half bandwidth. As our focus is on metals where
electron correlations do not play a major role, we ignore
the spin degree of freedom and consider a half-filled band
with a semi-circular density of states (DOS).

In DMFT for spatially homogeneous systems, the lat-
tice problem Eq. (1) is mapped onto a single impurity
which is coupled to the rest of the system via a dy-
namical Weiss field G−1

0 [4]. The latter is determined
self-consistently by spatially averaging the local Green’s
function G over all the equivalent sites of the lattice.
While this theory (which in the non-interacting limit is
known as the coherent potential approximation, or CPA)
can describe certain properties of disordered electron sys-
tems on the average [24, 25] it does not account for the
large and non-normal fluctuations that cause Anderson
localization of the electronic carriers. To this aim an al-
ternative mean-field description can be introduced that
focuses on the most probable, or typical quantities: the
typical density of states (TDOS) is defined as the geo-
metric average of the local DOS over sites with random
energy ε as ρtyp(ω) = exp

[∫
dεP0(ε) ln ρ(ω, ε)

]
. Accord-

ing to the Fermi golden rule, the escape rate from a given
site can be estimated as τ−1

esc ' t2ρ(ω, ε) [1]; the typical
escape rate is therefore proportional to the TDOS, which
represents the density of mobile states at a given energy.
The region in the band where ρtyp(ω) vanishes identi-
fies the mobility edge, and its value ρtyp(0) at the Fermi
energy serves as an order parameter for the Anderson
transition [16].

Solving the full model Eq. (1) involves the calculation
of Σe−ph(ω, ε), the local electron-phonon self-energy in
presence of site disorder. To this aim we first apply the
formulation of Refs. [22, 23] where the phonons are repre-
sented by a classical field that responds self-consistently
to the electrons. The advantage of this method, which
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FIG. 1: Phase diagram. Metal-insulator transition (MIT) at
T = 0 calculated for quantum phonons in the adiabatic regime
(ω0 = 0.05). The shaded area corresponds to the ”bad insu-
lator” behavior seen in transport (see text). The dashed line
is a sketch of the expected behavior approaching the clean
limit. The inset shows the effect of increasing phonon quan-
tum fluctuations.

is valid in the adiabatic limit ω0/D → 0, is that the lat-
tice randomness and the deformations are treated on the
same footing, for any value of λ. The effects of phonon
quantum fluctuations for ω0 6= 0 are subsequently in-
cluded via a diagrammatic non-crossing approximation
(NCA) valid in the weak and moderate electron-phonon
coupling regimes [26–28].

Disorder-induced polaron transition and mobility
gap.— Fig. 1(a) shows the phase diagram obtained
from the solution of the TMT-DMFT equations. In ab-
sence of electron-phonon interactions, λ = 0, the theory
reduces to that of Ref. [16]: a transition from a metal
to an Anderson insulator occurs at a critical disorder
strength W

(0)
c = e/2 ' 1.36, identified by ρtyp(0) = 0

(all states are localized). Turning the electron-phonon
coupling on stabilizes the Anderson insulator, decreasing
Wc: as anticipated, the effect is opposite to that of re-
pulsive Coulomb interactions [29] that instead screen out
the effects of disorder. As we proceed to show, polaron
states characteristic of the strong coupling limit exist all
the way down to λ→ 0, reflecting the positive interplay
of disorder and electron-phonon coupling [27, 30].

To illustrate the evolution of the electronic properties
across the transition, we report in Figs. 2(a-d) both the
average DOS and the TDOS, providing respectively the
spectrum of electronic states and their conductive char-
acter. Both quantities, calculated here in the classical
phonon limit (Fig. 1 inset), are accessible experimen-
tally through local spectroscopic probes [31]. For strong
electron-phonon interactions and weak disorder (panels
a-b), as the electron-phonon coupling strength reaches
the critical value λc a mobility gap opens at ω = 0 in-
dicating the localization of states around the Fermi en-
ergy (TDOS, shaded). This is rapidly followed by the
disappearance of the states themselves (DOS, red), as
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FIG. 2: Spectral features and order parameter. Panels (a-
d): average (bold line) and typical DOS (shaded) across the
MIT at T = 0, for classical phonons. (a,b) at W = 0.1, for
λ = 0.5, 0.64; (c,d) at λ = 0.05, for W = 1.1, 1.2; the dotted
line is the TDOS at λ = 0, shown for comparison; the DOS in
the second row have been scaled down by an arbitrary factor
for clarity. (e) Order parameter vs. disorder amplitude W .
From right to left, λ = 0, 0.05, 0.1, 0.2, 0.3, 0.4. The crosses
mark the polaron transition. The inset shows the quantum
case for λ = 0.3 and ω0 = 0.2.

both phenomena are driven by polaron formation: self-
trapping of the charges due to strong electron-phonon
interactions (and pinned by weak disorder) leads to a bi-
nary distribution of lattice displacements that splits the
excitation spectrum into two separate subbands [22].

Strikingly, the opening of a mobility gap at the MIT
persists down to the weakly interacting limit, a situation
that is of broad relevance to many disordered materials.
The behavior observed as the transition line is crossed
upon increasing W at small λ (cf. Fig. 2(d)) is funda-
mentally different from the case where lattice effects are
ignored from the beginning, where all states become lo-
calized at the MIT and no mobility gap is observed (dot-
ted line). At variance with the strong electron-phonon
coupling limit, however, here the mobility gap opens at
the Fermi energy in an electronic spectrum that is oth-
erwise essentially unperturbed. The critical behavior of
the order parameter, shown in Fig. 2(e), is also modified
accordingly: the mean-field behavior ρtyp ∼ (Wc −W )
found at λ = 0 [16] changes to (Wc −W )1/2 at the ap-
proach of the MIT, indicating a radical change in the
disorder distribution as soon as λ 6= 0 [32].

Self-consistent local potentials.– To substantiate this
statement, we introduce the self-consistent field u =
ε + ReΣe−ph(ω = 0, ε), defined as the local energy level
renormalized by the interaction with the deformable lat-
tice. In the static phonon limit considered first, the real
part of the electron-phonon self-energy reduces at T = 0
to the energy-independent Hartree term ReΣ(ω, ε) =√
λX0(ε), where X0(ε) is the static local deformation on

a site, given the local potential ε [22]. It is clear from
Eq. (1) that the site disorder acts as a polarization field
coupled to the charge, in full analogy with the external
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FIG. 3: Self-consistent fields and effective disorder. (a) Lat-
tice displacement X0 as a function of ε and (b) Effective dis-
order distribution: below (W = 1.0, dashed), at (W = 1.15,
dotted) and beyond the polaronic transition (W = 1.2, bold),
for λ = 0.05 and T = 0. Thin lines in (a) and (b) are the
NCA results for quantum phonons at W = 1.2 and ω0 = 0.2
(the value of ω0 is marked by arrows in (b)).

magnetic field in the Ising model. Accordingly, an or-
der parameter for the polaron transition can be defined
as the value X0 = limε→0+ X0(ε) much like the remnant
magnetization in a ferromagnet, as shown in Fig. 3(a).

Inverting for ε(u) leads to the effective disorder dis-

tribution Peff (u) = P0(ε(u))/|1 +
∂Σe−ph

∂ε | reported in
Fig. 3(b), showing that the action of the lattice degrees
of freedom dramatically changes the nature of the disor-
der. As randomness increases, the presence of correlated
electron-lattice displacements leads to a discontinuity in
X0(ε), signalling a polaron transition; correspondingly,
a gap opens in Peff (u). Moreover, the buildup of local
deformations correlated with the large fluctuations of the
site potentials starts already well before the transition,
This causes a dip in the distribution (dashed line in Fig.
3(b)) and a suppression of the mobile states available
at the Fermi energy (Fig. 2(c)), which has fundamental
consequences for charge transport as we show next.

Minimum metallic conductivity.— We evaluate the
electrical conductivity from the Kubo formula following
Refs. [33, 34], by expressing the current-current cor-
relation function as χJJ(ω) = Λ(ω)P1(ω), which iso-
lates the dominant non-local contribution P1 respon-
sible for localization. From Ref. [25] we have that
P1(ω) = B(ω)ρtyp(ω) with B(ω) a weakly ω-dependent
function, so that the conductivity is correctly propor-
tional to the order parameter of the Anderson transi-
tion. The prefactor Λ is non-critical and can be calcu-
lated within DMFT-CPA as Λ(ω) = χCPAJJ (ω)/PCPA1 (ω),
leading to the following interpolation formula (see Sup-
plemental Material):

σ = σ0

∫
dω

(
−∂f
∂ω

)
χCPAJJ (ω)

ρ(ω)
ρtyp(ω), (2)
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FIG. 4: Conductivity and Mott limit. (a) σ(T ) in the weak
coupling regime, λ = 0.05, expressed in units of σM (see text);
from top to bottom, W = 0.0, 0.125, 0.25, 0.5; 0.8, 1.05, 1.16,
1.3, 1.5. For W = Wc = 1.16 (bold) we also show the power-
law extrapolation to T = 0 (dotted). The shaded area is the
experimental range 100−250µΩcm where the TCR is seen to
vanish in most single-band materials [35, 36]. (b-d) Scattering
time and order parameter for representative parameters in
the metallic phase (W = 0.125), at the Mott-Ioffe-Regel limit
(W = W ∗ = 0.8) and at the MIT (W = Wc). Both quantities
are expressed in units of 1/D.

where f is the Fermi function and σ0 = πe2a2/h̄v the
conductivity unit (a and v are respectively the lattice pa-
rameter and the unit cell volume). Eq. (2) can be greatly
simplified by taking the T → 0 limit and introducing the
transport scattering time from the semi-classical expres-
sion χCPAJJ (0) ∝ ρ(0)τ [21]. The resulting

σ ∝ ρtyp(0) τ (3)

acquires a transparent physical meaning: upon approach-
ing the Anderson insulator, part of the carriers localize
due to quantum interference effects and drop out of the
conductivity, which is encoded in ρtyp [1]; the remaining
itinerant carriers are not affected by localization and are
therefore scattered by disorder and lattice fluctuations in
a way that is properly described by the semi-classical τ .

The conductivity obtained from Eq. (2) is illustrated
in Fig. 4(a) (note that Eq. (3) would provide essen-
tially indistinguishable results for T <∼ 0.1). Within the
metallic regime at low disorder, the standard Drude-
Boltzmann picture applies, leading to a conductivity
that decreases with temperature: this is due to strongly
temperature-dependent scattering between (largely) T -
independent electronic states. This can be checked di-
rectly in Fig. 4(b), which reports the behavior of τ and
ρtyp separately. Upon increasing the disorder strength,
the scattering rate progressively increases (τ decreases)
until it becomes comparable with the bandwidth D, cf.
Fig. 4(c). At this point, denoted as W = W ∗, all quan-
tities including the conductivity become essentially tem-
perature independent. For even stronger disorder, the

scattering time cannot be reduced further as it has al-
ready saturated to its minimum value.

Remarkably, the value of the conductivity at W ∗ pre-
cisely coincides with Mott’s minimum metallic conduc-
tivity σM , i.e. the Mott-Ioffe-Regel (MIR) limit [36–38].
The MIR limit therefore marks the onset of a regime
where transport is not governed by how the electrons are
scattered, but rather by the strong T -dependence of the
electronic spectrum itself: a mobility pseudo-gap opens
at low T reflecting disorder-enhanced polaronic processes
(cf. Fig. 2(c) and the subsequent discussion), which is
progressively filled upon increasing the temperature as
shown in Fig. 4(d) (dashed line). Moreover, the actual
number of mobile charge carriers is much smaller than
the total number of electrons in the system, as most
electronic states are now localized. This results in a
”bad insulator” transport regime (Fig. 4, blue and Fig.
1, shaded) which displays conductivity values below the
MIR limit and an insulating-like temperature coefficient
dσ/dT > 0 but with a finite d.c. intercept, an unex-
plained behavior that is often observed in strongly disor-
dered metals [3]. Such intermediate regime ends at the
critical point, where a mobility gap fully opens and the
conductivity eventually vanishes at T = 0 (thick line).

Lattice quantum fluctuations.— We now show that
the MIT reported in Fig. 1 is a robust phenomenon, i.e.
a genuine transition exists from ω0 = 0 all the way to
ω0 → ∞. The critical line obtained in the static limit
is shown in the inset of Fig. 1. In the opposite limit,
ω0 → ∞ (λ finite), the electron-phonon interaction be-
comes ineffective for spinless electrons. The transition

therefore occurs at the non-interacting value W
(0)
c inde-

pendent of λ. We conclude that a MIT must exist for any

finite ω0, located between W
(0)
c and the critical line for

classical phonons. This is indeed what we find numeri-
cally (Fig. 1 and Fig. 2(e), insets). Increasing values of
ω0 produce a slight stabilization of the metal; yet, at the
coupling strengths attainable with the NCA, the MIT
remains very close to the one calculated with classical
phonons. Sizable differences are expected instead as one
approaches the clean limit W = 0. There, it is known
that quantum fluctuations push the MIT to λ → ∞,

while the classical limit yields a transition at λ
(0)
c = 0.67

[22]. A sketch of the behavior inferred from the above
considerations is shown as a dashed line in Fig. 1.

The key phenomenon that we unveiled, i.e. the corre-
lated response of the lattice to the local random poten-
tials, is also preserved at finite ω0: as shown in Fig. 3(b),
the distribution of the self-consistent field is essentially
unchanged by phonon quantum fluctuations at large ε,
and the gap in the distribution of u remains finite, al-
though somewhat renormalized as compared to the static
phonon case. In more refined treatments, such gap could
be partially filled by exponential tails [26, 39, 40].
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Concluding remarks.— In this Letter we provided a
clear microscopic picture of disorder-driven MITs in de-
formable lattices, where disorder-enhanced interaction ef-
fects dominate all physical processes. Such interplay is
revealed most prominently in the emergence of an in-
termediate regime that separates the conventional metal
from the insulator, where the system still conducts at
T = 0, but it displays resistivity that decreases with tem-
perature, i.e. negative TCR behavior. Remarkably, the
boundary of this anomalous transport regime, found at
intermediate disorder W = W ∗, is marked precisely by
the resistivity reaching Mott-Ioffe-Regel limit, as argued
in very early works by Mott. The actual MIT point is
reached at somewhat stronger disorder W = Wc > W ∗,
and it displays all signatures of a T = 0 quantum crit-
ical point, with power-law scaling behavior of all quan-
tities. Our findings, therefore, reconcile Mott’s concept
of ”minimum metallic conductivity”, and the ideas based
on the scaling theory of localization of Anderson and fol-
lowers. We showed that both ideas apply, but they do
so in two physically distinct regimes within the phase
diagram. Our results open the road to properly inter-
pret many puzzling experiments in disordered metals, in-
cluding the long-standing puzzle of ”Mooij Correlations”
[3, 35], which remains a challenge for future work.
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