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Recent experiments have uncovered evidence of the strongly coupled nature of the graphene: the
Wiedemann-Franz law is violated by up to a factor of 20 near the charge neutral point. We describe
this strongly-coupled plasma by a holographic model in which there are two distinct conserved U(1)
currents. We find that our analytic results for the transport coefficients for two current model have
a significantly improved match to the density dependence of the experimental data than the models
with only one current. The additive structure in the transports coefficients plays an important role.
We also suggest the origin of the two currents.

PACS numbers: 11.25.Tq, 71.10.Hf.

Introduction: It has been argued that graphene near
charge neutrality forms a strongly interacting plasma, the
Dirac fluid. It does not have well-defined quasiparticle
excitations, and amenable to a hydrodynamic description
[1–10]. Evidence for such a Dirac fluid has appeared in
recent experiments [11] on a violation of the Wiedemann-
Franz law (WFL) in extremely clean graphene near the
charge neutral point: the ratio of heat conductivity and
electric conductivity, L = κ/Tσ, was found to be up to
20 times the Fermi liquid value.

The simplest hydrodynamic model [12], with point-like
and uncorrelated disorder and a single conserved U(1)
current, agrees with the overall experimental trends, but
has difficulty capturing the density dependencies of both
the electrical (σ) and thermal (κ) conductivities [13]. An
alternative hydrodynamic model, the “puddle” model,
with long-wavelength disorder in the chemical potential
and a single conserved U(1) current, led to a better agree-
ment with observations [13], but still left a room for im-
provement.

In this letter, we will explore a model with two con-
served U(1) currents. The idea is that introducing a new
neutral current can enhance the transport of the heat
relative to that of the charge. Our model will be for-
mulated in holographic terms[14, 15], to utilise the re-
cent progress in the developoment of transport calcula-
tion in gauge/gravity duality [16–27]. The Dirac fluid
in our model is described by an Anti de Sitter (AdS)
black hole in 3+1 dimensions, the holographic dual of
2+1 dimensional system at finite temperature. The mo-
mentum dissipation is treated using scalar fields, which
corresponds to weak point-like disorder. We calculate
electric, thermo-electric power and thermal conductivi-
ties analytically. We find that, under the assumption that
the conserved charges Q1, Q2 are proportional to each
other, the theoretical results for the density dependencies
of the electric and heat conductivities can now satisfac-
torily match the the experimental data in the Dirac fluid
regime.

One possible mechanism for the extra current is the
kinematic constraints of energy-momentum conservation

on the Dirac cone, which reduce the phase space of elec-
tron and hole scattering significantly [4], allowing elec-
trons and holes to form independent currents as far as
the relaxation time for mixing between the currents is
presumed to be is much longer than the Plankian relax-
ation time ~/kBT , the time required for hydrodynamic
regime at work. It should be noted, however, that the es-
timates of electron and hole equilibration times are made
in quasiparticle framework [4], whose validity in hydro-
dynamic regime is just assumed here. We will see that
the kinematics on the Dirac cone also provide a reason
why the two charge densities can be proportional.

DC Transport with two U(1) fields : We start
from the action S =

∫
d4x
√
−gL with two gauge fields

Aµ, Bµ, a dilaton field φ and the scalar fields χ1, χ2 for
momentum dissipation:

L =R− 1

2

[
(∂φ)2 + Φ1(φ)(∂χ1)2 + Φ2(φ)(∂χ2)2

]
− V (φ)− Z(φ)

4
F 2 − W (φ)

4
G2, (1)

where F = dA, G = dB and F 2 = FµνF
µν etc. We also

require positivity of Φi(φ), Z(φ) and W (φ). The action
(1) yields equations of motion:

Rµν −
1

2
gµνL = Tµν , ∇µ(

√
−gΦi∇µχi) = 0 = ∂µ(

√
−gZFµν),

∇2φ−
2∑
i=1

Φ′i
2

(φ)(∂χi)
2 − V ′(φ)− Z ′(φ)

4
F 2 − W ′(φ)

4
G2 = 0,

Tµν =
1

2
∂µφ∂νφ+

2∑
i=1

Φi
2
∂µχi∂νχi +

Z

2
FλµFνλ +

W

2
GλµGνλ.

(2)

We take the ansatz for metric and the gauge fields as

ds2 = −U(r)dt2 +
1

U(r)
dr2 + ev(r)(dx2 + dy2)

A = A(r)dt, B = B(r)dt. (3)
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The gauge field A has the chemical potential and charge
density as its components of its near boundary expansion,
A(r) = µ1 − q1/r + · · · . At the horizon at r = r0, U
vanishes and A,B → 0 also for the regularity. If we take
the following solution, χ1 = kx, χ2 = ky, it provides
momentum relaxation. From now on, we set Φ1 = Φ2 =
Φ for simplicity. The only non-zero components in the
Maxwell equations are that for the tr-component of the
field strengths whose first integral give conserved charges,

Q1 =
√
−gZ(φ)F tr = Z(φ)evA′(r)

Q2 =
√
−gW (φ)Gtr = W (φ)evB′(r). (4)

One can see that if ev ∼ r2 in asymptotic region, Qi
corresponds to the charge density of the boundary field
theory. To compute the transport coefficients, we turn
on small fluctuations around the background solution:

δGtx =tδf1(r) + δgtx(r), δGrx = ev(r)δhrx(r),

δAx =tδf2(r) + δa(r), δBx = tδf3(r) + δb(r), (5)

as well as δχi(r)’s. We choose the functions fi(r) as

δf1(r) = −ζU(r), δf2(r) = −E1 + ζA(r),

δf3(r) = −E2 + ζB(r), (6)

such that the time t does not appear in the equations of
motion of the fluctuations. Here, E1, E2 are thmo-electric
forces acting on J1, J2 respectively and ζ = −∇T/T .
From the A field fluctuation equations, the currents are
defined by [18],

J1 =
√
−gZ(φ)F xr, J2 =

√
−gW (φ)Gxr

Q = U(r)2
d

dr

(
δgtx(r)

U(r)

)
−A(r)J1 −B(r)J2. (7)

Notice that near the boundary, the heat current becomes
Q = T tx−µ1J1−µ2J2. Moreover, these currents are con-
served along radial direction r. Therefore their boundary
values are related to that of horizon data, which can be
determined from the regularity at the horizon [19]:

δa(r) ∼ − E1

4πT
ln(r − r0), δgtx(r) ∼ δg(0)tx , · · · . (8)

Using above horizon behavior we get the boundary cur-
rent in terms of the external sources:

J1 =

(
Z0 +

e−v0Q2
1

k2Φ0

)
E1 +

e−v0Q1Q2

k2Φ
E2 +

4πTQ1

k2Φ0
ζ,

J2 =

(
W0 +

e−v0Q2
2

k2Φ0

)
E2 +

e−v0Q1Q2

k2Φ
E1 +

4πTQ2

k2Φ0
ζ

Q =
4πTQ1

k2Φ0
E1 +

4πTQ2

k2Φ0
E2 +

(4πT )2ev0

k2Φ0
ζ.

(9)

The eq. (9) can be written in matrix form, Ji = ΣijEj ,
with J3 = Q and E3 = ζ. The transport coefficients can

be read off from the eq. (9) and the definition σ1 δ α1T
δ̄ σ2 α2T

ᾱ1T ᾱ2T κ̄T

 := Σ. (10)

Notice that the matrix is real and symmetric, so that the
Onsager relations hold:

ᾱi = αi, δ̄ = δ. (11)

The heat conductivity κ is defined by the response of the
temperature gradient to the heat current in the absence
of other currents: setting J1 and J2 to be zero in (9), we
can express E1 and E2 in terms of ζ. Substituting these
to the first line of (9), we get

κ = κ̄− T ᾱ1(α1σ2 − α2δ)

σ1σ2 − δδ̄
− T ᾱ2(α2σ1 − α1δ̄)

σ1σ2 − δδ̄
. (12)

To discuss more explicitly, we consider a black hole solu-
tion with two charges:

U(r) = r2 − m0

r
− k2

2
+

1

4r2

(
Q2

1

Z0
+
Q2

2

W0

)
, (13)

where m0 is given by U(r0) = 0 and the temperature is

T =
r0
4π

(
3− k2

2r20
− Q2

1

4Z0r40
− Q2

2

4W0r40

)
. (14)

The solutions of U(1) gauge fields are a(r) = µ1 − q1
r ,

b(r) = µ2 − q2
r . Notice qi = Qi/Zi with Z1, Z2 being

Z0,W0 respectively. For the finite vector norm gµνAµAν
at the horizon r = r0, we need µi = qi/r0.

The conductivities for any number of conserved cur-
rents can be calculated explicitly:

σi = Zi +
Q2
i

r20k
2
, σij =

QiQj
r20k

2
, κ =

κ̄

1 +
∑
i 4πQ2

i /sk
2Zi

,

with κ̄ = 4πsT/k2, s = 4πr20 and Zi is the coupling of
Ai. If we identify the total electric current as J =

∑
i Ji

and thermo-electric force as Ei = E−T∇(µi/T ), we can
calculate the electric conductivity to give

σ =
∂J

∂E
=
∑
i

σi +
∑
i,j

σij = Z + 4πQ2/sk2, (15)

where Q =
∑
iQi and Z =

∑
i Zi, showing the additivity

of charge-conjugation-invariant part [26] of the electric
conductivity. If we define the heat conductivity due to
the i-th current by 1/κi = 1/κ̄+Q2

i /Zis
2T , then the heat

conductivity formula leads us to additivity of dissipative
part of the inverse heat conductivity. Therefore

D[1/κ] =
∑
i

D[1/κi], D̄[σ] =
∑
i

D̄[σi], (16)

where D[f ] denotes the dissipative part of f and D̄[f ] =
f −D[f ] .
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Finally we claim that the experimental data of
graphene will be well fit with two current theory if we
assume the proportionality of two charges

Q2 = gQ1, (17)

whose justification will be discussed later. This assump-
tion together with the additivities in eq.(16) are what
makes our two current model work.

Origin of two Currents in Graphene: What is
the nature and the origin of the extra current in the
graphene. There are a few attractive candidates. The
first idea is the effect of imbalance [4] between the elec-
trons and holes due to the kinematical constraints of the
Dirac cone. When there is such an deviation of electron
and hole density from their equilibrium value, then the
system has tendency to reduce the difference by creat-
ing/absorbing electron-hole pair:

e− ↔ e− + h+ + e−, h+ ↔ h+ + h+ + e− (18)

In such processes, energy and momemtum conservations
must hold. The point is that, for the graphene, the lin-
ear dispersion relation severely reduces the kinematically
available states [4]: If we define ~q as a momentum mea-
sured from a Dirac point,

~q1 = ~q2 + ~q3 + ~q4, |~q1| = |~q2|+ |~q2|+ |~q3|, (19)

which request the co-linearity of all momentum vectors
~q1, · · · , ~q4. Therefore available phase space is greatly re-
duced. Such kinematical constraints maintains the non-
equilibrium states and as a consequence, the two currents
Je, Jh behave independently for a long time compared
with the Planck time ∼ ~/kT , which is the time for hy-
drodynamics to work.

The net electric current J and total number current
Jn which become neutral at Dirac point, are defined by
J = Je + Jh, Jn = Je − Jh, respectively and their elec-
tric charge densities and number densities are related
by Q1 = en1 and Q2 = −en2. The total electric con-
ductivity σ = ∂J

∂E and κ can be expressed in terms of
Q = Q1 + Q2 and Qn = Q1 − Q2 together with the
proportionality constant gn of Qn = gnQ:

σ = σ0(1 + (Q/Q0)2), κ =
κ̄

1 + (1 + g2n)(Q/Q0)2
, (20)

where

σ0 =
e2

~
2Z0, κ̄ =

4πkB
~

sT

k2
, Q2

0 =
~σ0

4πkB
sk2. (21)

To fix the parameters, we used four measured values
of ref. [11] at 75K, σ0 = 0.338/kΩ, κ̄ = 7.7nW/K ,
Q0 = e · 320/(µm)2, together with the curvature of den-
sity plot of κ to fix gn = 3.2 and assumed charge conjuga-
tion symmetry to set W0 = Z0. Using these, the basic pa-
rameters of the theory as well as the entropy density can
be determined: 2Z0 = 1.387, k2 = 454

(µm)2 , s = 2044 kB
(µm)2 .

(a)

(b)

FIG. 1. Theory vs. Data: (a)density plot of σ, (b)that
of κ. Red circles are for data used in [11, 13], dashed lines
are for one current model and real lines are for two current
model. The blue color is for the Fermi Liquid regime and
near charge neutral point is the Dirac fluid regime, where our
theory works. Color grading is given to guide the eye.

We replace all r0 dependence by s, the entropy density
by s = 4πkBr

2
0. Cosmological constant is not determined

due to the inherent scale symmetry. The resulting fit to
data is given in Fig.1.

Now, why we can set the proportionality of the two
charges as given in eq. (17). To avoid the issues involved
in the transport by puddle, we simply assume that the
system is homogeneous. Then the number densities of
electrons and holes created by thermal excitation is pro-
portional to the net charge density: for the fermi liquid
case, out of total degree of freedom (d.o.f) n ∼ k2F ∼ µ2,
excitable d.o.f is ∼ kT · µ, because the excitable shell
width is kT . But in hydrodynamic regime, kT >> µ,
therefore entire non-degenerate charge distribution re-
gion is excitable. In fact this is a typical situation of
fermion dynamics described by AdS black hole [28, 29].
In summary, in case of the hydrodynamic regime, the
charge carrier density created is proportional to total de-
gree of freedom, Q, which is the volume of the Dirac cone
above the Dirac point.

We remark that due to strong Coulomb interaction,
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the created electron hole pairs can form the bound state,
exciton. Such excitons in homogeneous graphene satisfies
the linear relations between the electric charge and the
exciton number. Although exciton in graphene has been
discussed extensively [30, 31], mosts are only for bi-layer
graphene. However, we expect that strong coulomb in-
teraction in Dirac Fluid regime of single layer graphene
also should be able to make bound state.

Discussions: In the presence of an extra current that
carries mainly heat, the violation of WFL is not direct
evidence of a Dirac fluid. However, the fact that such
a phenomenon is quantitatively well described by hydro-
dynamics and gauge/gravity duality, indicates that the
system is strongly correlated.

Disorder and the nature of the scalar field: The scalar
field provides momentum dissipation only when both its
gradient and the vacuum expectation value of its dual
operator, 〈OI〉, are nonzero. The latter is the analogue
of charge density in electric field as one can see from the
Ward identity,

∇νTµν = 〈OI〉∇µχ0
I + F 0

µν 〈Jν〉 . (22)

The role of the source field χ0
I = kxI is the chemical po-

tential of impurity and that of 〈OI〉 is the density of im-
purity, whose presence gives the momentum dissipation.
It is identified as the subleading order term of the fluctu-
ation of the scalar field near the boundary and nonzero
due to the presence of curvature in AdS spacetime. k2

can be understood as the density of the uniform impurity.

Other origins of the second current: We suggested
imbalacnce and excitons as possible sources for the ex-
tra current. Here we discuss other candidates. i) Spin
charge separation:This is the simplest to explain the phe-
nomena if such separation could be experimentally con-
firmed: the spinons are obviously the chargeless heat car-
rier and densities of spinnons and holons must be the
same and equal to the original electron density. ii) val-
ley currents: Graphene consists of two sublattices A and
B and such electrons in each sublattice do not scatter,

hence they form two conserved currents. However, they
do not necessarily satisfy the linearity condition eq.(17).
iii) Phonon: At high temperature, the phonons are the
main heat carriers in carbon materials. However, there
are good reasons that phonon is not the main player in
the regime we are discussing [11].

Future directions: It would be interesting if we can ex-
tend our method to multilayered graphene and graphite.
Some holographic analysis for the latter was already re-
ported [27]. The thermo-electric power and magneto-
transport are also very interesting observable for the
Dirac Fluid regime. We note that some of the early data
began to be produced[32]. From the experimental side,
the abundance of excitons in single layer graphene is re-
mained to be verified experimentally. The strong correla-
tion was measured only in the limited temperature win-
dow 45K < T < 90K and in the density regime near the
charge neutral point[11], outside of which graphene has
well been described as weekly interacting system whose
gravity dual is hard to find if exist. Nevertheless presence
of such strongly interacting regime can give us extraordi-
nary guide in constructing the general theory of strongly
interacting many body system.
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