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The Anderson transition in solids and optics is a wave phenomenon where disorder induces lo-
calization of the wavefunctions. We find here that the hallmarks of the Anderson transition are
exhibited by classical transport at a percolation threshold - without wave interference or scattering
effects. As long range order or connectedness develops, the eigenvalue statistics of a key random
matrix governing transport crossover toward universal statistics of the Gaussian orthogonal ensem-
ble, and the field eigenvectors delocalize. The transition is examined in resistor networks and sea
ice structures.

PACS numbers: Valid PACS appear here

I. INTRODUCTION

The Anderson theory of the metal-insulator transition
(MIT) [1, 2] provides a powerful, quantum mechanical
framework for understanding when a disordered medium
allows electronic transport, and when it does not. Indeed,
for large enough disorder the electrons are localized in dif-
ferent places, with uncorrelated energy levels described
by Poisson statistics [3, 4]. For small disorder, the wave
functions are extended and overlap, giving rise to corre-
lated Wigner-Dyson (WD) energy level statistics [3, 4]
with strong level repulsion [5]. For intermediate disorder
hybrid Poisson-like level statistics arise [3, 4, 6, 7].
Here we consider the effective transport coefficients of

macroscopic two phase composites in 2D and 3D [8–10],
including electrical and thermal conductivity, diffusivity,
complex permittivity, and magnetic permeability. All
are formulated with the same elliptic partial differential
equation (PDE). For example, electrical conduction is de-
scribed by ∇· (σ∇φ) = 0 with potential φ, electric field
E = −∇φ, and local conductivity σ taking the values
σ1 or σ2. A metal−insulator mixture is modeled with
h = σ1/σ2 → 0. Near a percolation threshold the system
undergoes a classical MIT with the effective conductivity
σ∗ described by critical exponents [10–12].
The underlying physics of the quantum and classical

MIT are quite different. Anderson localization in quan-
tum systems, described by the Schrödinger equation, is
a wave interference phenomenon, and should be univer-
sal to all wave systems, such as in optics where it has
been investigated extensively [13]. On the other hand,
for transport in macroscopic two phase media governed
by the elliptic equation above, there are no wave interfer-
ence or scattering effects and no quantum phenomena.
It is surprising then that the self-adjoint random op-

erator G governing effective transport in composites has
spectral properties that transition in a way that is strik-
ingly similar to the Anderson transition in wave mechan-
ics. We find here that phase connectedness in composites
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determines the Anderson-like transition in the spectral
properties of G. The critical volume fraction at the per-
colation threshold [11] plays the role of the critical level
of disorder necessary for localization in wave physics.
The operator G arises in the analytic continuation

method [14–16] for studying transport in two phase com-
posites. Stieltjes integral representations for the bulk
transport coefficients such as σ∗ incorporate the two
phase mixture geometry in a spectral measure µ of G
[16]. For discrete media such as the random resistor net-
work (RRN) [11], G is a real-symmetric random matrix

and the spectral measure µ as well as the electric field E

are given explicitly in terms of its eigenvalues and eigen-
vectors [10, 17]. The locations of the eigenvalues along
the negative real axis in the h−plane correspond to sin-
gularities of the bulk transport coefficients [8, 10, 12, 18].
We observe that as the conducting phase percolates,

the eigenvectors of G shift from localized to extended,
causing the electric field E to spread throughout the sys-
tem. Near the connectedness-driven MIT mobility edges

appear, analogous to Anderson localization where mobil-
ity edges mark the characteristic energies of the quantum
MIT [5]. The overlap of eigenvectors of G gives rise to
a transition in the statistical properties of the eigenval-
ues from weakly correlated Poisson-like statistics toward
universal Wigner-Dyson (WD) statistics of the Gaussian
orthogonal ensemble (GOE) with strong level repulsion
[3–5]. This eigenvalue repulsion explains the collapse of
spectral gaps as connectedness develops [17–20], which is
closely related to critical behavior [10, 12, 18–22].
To help connect our findings to the physics of dis-

ordered media, we consider two systems whose optical
properties are determined by the spectral characteristics
considered here, and where our findings may have ob-
servable consequences: metallic particles in an insulating
host, such as colloidal suspensions of gold nanoparticles
in a liquid [10], and metal films such as depositions of
nanosized metal particles on a dielectric substrate [23].
The long wavelength quasistatic assumption holds in the
visible range, and these systems are described macroscop-
ically by an effective complex permittivity ǫ∗, and locally
by the above elliptic PDE with local complex permittiv-
ity values ǫ1(ω) and ǫ2(ω). Values of h = ǫ1/ǫ2 near the
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negative real axis can be realized in these systems over
certain ranges of frequency ω [10]. The resonance struc-
ture of ǫ∗ and the absorption profile, such as sharp peaks
associated with surface plasmon resonances [10, 23], are
then observable [10, 12] and determined by the spectral
properties of G. For finite discrete models such as RL−C
networks [10, 12, 18, 23], the eigenvalues of the matrix
G are poles of the effective complex conductivity which
collectively give rise to network resonances. Indeed, ge-
ometrical disorder in these media leads to a broad range
of surface plasmon resonances analogous to RL−C reso-
nances, and strong enhancement of the local electric fields
[23]. Our findings on the transition to universality of
the resonance spacing distribution, for example, may be
observable through analysis of the fine structure of the
absorption spectra. Interestingly, WD universality has
been observed in microwave absorption spectra of a sus-
pension of metal particles at low temperature, where the
energy level spacing distribution for electronic states in
the grains determines the conductivity [24].

As remarked above, the physics of the quantum and
classical MIT are different. Thus we emphasize that the
similarities to the Anderson transition described here are
mathematical in nature and one cannot expect a similar-
ity in all physical aspects. For example, the dependence
of the conductivity on the eigenvalues and eigenvectors
is different in the quantum and classical cases. More-
over, in quantum conduction a magnetic field breaks time
reversability, yielding a Hermitian random matrix and
a crossover to universal WD statistics of the Gaussian
unitary ensemble (GUE), instead of the GOE associated
with time reversability and a real-symmetric random ma-
trix [25]. The Anderson transition to GUE universality
has been captured by an exactly solvable model [4, 7],
while the transition to GOE universality remains open.

In random matrix theory (RMT) [5, 26, 27], long and
short range correlations of the eigenvalues [5, 6] of ma-
trices with random entries are measured using various
statistics [5, 26], such as the eigenvalue spacing distri-
bution (ESD). Eigenvector localization is often described
by the inverse participation ratio (IPR) [2, 28]. A fasci-
nating feature of RMT is that eigenvalue statistics aris-
ing in a broad range of unrelated systems exhibit the
same universal behavior – from nuclear spectra [5, 26]
and mesoscopic conductors [25] to random graphs [29]
and quantum chaos [5]. Here we explore the transition
to GOE universality in the 2D and 3D RRN, as well as
in 2D discretizations of the brine microstructure of sea
ice [30, 31], melt ponds on the surface of Arctic sea ice
[32], the sea ice pack itself, and porous human bone [33].

II. MATHEMATICAL METHODS

Consider conduction in two phase composites [8, 10,
16, 17], where E and J are the electric and current den-
sity fields satisfying J = σE, ∇·J = 0 and ∇×E = 0,
and σ is the local conductivity. For a stationary random

medium in 2D or 3D with component conductivities σ1
and σ2, σ = σ1χ1 + σ2χ2, where χ1 = 1 in medium one
and is 0 otherwise, with χ2 = 1− χ1.
The effective conductivity matrix σ

∗ can be defined
by 〈J 〉 = σ

∗〈E〉 with average field 〈E〉 = E0. Here 〈·〉
denotes ensemble averaging over the probability distri-
bution defining the random medium, and E0 = E0e1 for
example, where e1 is a unit vector in the x−direction
[16]. Equivalently, we find φ satisfying ∇· (σ∇φ) = 0 in
the 2D square [−L,L]× [−L,L], or 3D cube, φ(−L, y) =
−LE0 and φ(L, y) = LE0 for −L ≤ y ≤ L, and ∂φ/∂y =
0 on the top and bottom, so that 〈E 〉L = E0. Here 〈·〉L
is spatial average. The effective conductivity matrix σ

∗

L

is defined by 〈J 〉L = σ
∗

L
〈E〉L. For stationary, ergodic σ,

limL→∞ σ
∗

L
= σ

∗ (see the Apppendix in [16]).
The key to the analytic continuation method is the

Stieltjes integral representation [14–17]

F (s) = 1− σ∗

σ2
=

∫
1

0

dµ(λ)

s− λ
, s =

1

1− σ1/σ2
, (1)

where we focus on a diagonal coefficient σ∗ = σ∗

kk of the
matrix σ

∗ for isotropic media. Equation (1) follows from
the resolvent formula for the electric field [16, 17]

χ1E = s(sI −G)−1χ1E0, (2)

and F (s) = 〈χ1E·E0〉/(sE2
0
), where µ is a spectral

measure of the random operator G = χ1Γχ1 and Γ =
−∇(−∆)−1

∇· is projection onto curl-free fields, based
on convolution with the Green’s function for the Lapla-
cian ∆ = ∇2. Parameter information in s is separated
from mixture geometry information, which is encoded

into µ via its moments, µn =
∫ 1

0
λndµ(λ). For example,

µ0 = 〈χ1〉 = p, the volume fraction of medium one. All of
the effective properties of the composite are represented
via Stieltjes integrals with the same µ [34]. The measure
µ reduces to a weighted sum of Dirac δ-functions δ(λ−λj)
for media such as laminates, hierarchical coated cylinder
and sphere assemblages, and finite resistor networks [8].
Consider a square d = 2 RRN in [0,L]×[0,L], with con-

ducting bars along x = 0 and x = L and periodic bound-
ary conditions at y = 0 and y = L, and its cubic d = 3
analog. In this case, G = χ1Γχ1 is a real-symmetric ran-
dom matrix of size N = Ldd [17], χ1 is a diagonal matrix
with 1’s and 0’s along the diagonal corresponding to bond
type, and Γ is a projection matrix [17]. The measure µ
is determined by the eigenvalues λj and eigenvectors vj

of N1 × N1 sub-matrices of Γ corresponding to diago-
nal components [χ1]jj = 1, dµ =

∑
j〈mj δ(λ − λj) 〉dλ,

where mj = [vj ·χ1ek]
2, j = 1, ..., N1, N1 ≈ pN [17].

To calculate eigenvalue and eigenvector statistics, we
have converted 2D images of sea ice and bone to resistor
networks. Fig. 1 displays images of the Arctic ice pack
with a binary version on the far right. The matrix G =
χ1Γχ1 is then obtained for these binary discretizations.
Finally, consider the time dependent Schrödinger equa-

tion i~ ∂ψ/∂t = Hψ, and the Laplace transform Ψ(x, s)
of ψ(x, t), as in [1] (here s is the transform variable).
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FIG. 1: Connectedness transition in composite struc-

tures. Images of the Arctic sea ice pack (D. K. Perovich)
with increasingly connected ocean phase from left to right.
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FIG. 2: Short-range eigenvalue correlations. The ESDs
for Poisson (blue dash-dot) and WD (green dashed) spectra
are shown in (a)–(c), along with ESDs for (a) the Arctic sea
ice pack, (b) Arctic melt ponds, and (c) 2D RRN.

Then Ψ(x, s) has a resolvent representation analogous to
Eq. (2), Ψ(x, s) = (i~sI − H)−1ψ(x, 0). Then G for
classical transport is an analog of the Hamiltonian H .

III. NUMERICAL RESULTS

For highly correlated WD spectra of the GOE,
the nearest neighbor eigenvalue spacing distribution
(ESD) P (z) is accurately approximated by P (z) ≈
(πz/2) exp(−πz2/2), which illustrates eigenvalue repul-

sion, vanishing linearly as spacings z → 0 [5, 6, 25].
In contrast, the ESD for uncorrelated Poisson spectra,
P (z) = exp(−z), allows for level degeneracy [5].
In Fig. 2 we display the ESDs for Poisson and GOE

spectra, along with the ESDs for G corresponding to
sea ice composite structures with fluid area fraction p
and the 2D RRN with a fraction p of phase 1. (To
observe statistical fluctuations of eigenvalues about the
mean density ρ(λ) [5, 26], the spectrum must be un-

folded [5, 6, 28].) It shows that for sparsely connected
systems, the behavior of the ESDs is well described by
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FIG. 3: Long-range eigenvalue correlations. (a)–(c) The
eigenvalue number variance Σ2(L ) and (d)–(f) the spectral
rigidity ∆3(L ) for Poisson (blue dash-dot) and WD (green
dash) spectra are shown along with those of (a) Arctic pack
ice, (b) Arctic melt ponds, (c) sea ice brine inclusions, (d)
human bone microstructure, (e) 2D RRN, and (f) 3D RRN.

weakly correlated Poisson-like statistics [6]. They in-
crease linearly from zero but the initial slope of the curve
is steeper than in WD case, implying less repulsion, and
the tails decay exponentially. With increasing connected-
ness, the ESDs transition toward highly correlated WD
statistics with strong level repulsion and Gaussian tails.
For the 2D and 3D RRN, the eigenvalue density ρ(λ, p)
obeys ρ(λ, p) = ρ(1 − λ, 1 − p) in the bulk of the spec-
trum. This is reflected in the ESDs by the symmetry
P (z, p) = P (z, 1−p), as shown for the 2D RRN in Fig. 2c.

Long-range eigenvalue correlations are measured by
quantities such as the eigenvalue number variance Σ2(L ),
in intervals of length L (not to be confused with the sys-
tem size L), and the spectral rigidity ∆3(L ) [5]. For
uncorrelated Poisson spectra, these long range statistics
are linear, with Σ2(L ) = L and ∆3(L ) = L/15. In con-
trast, the strong correlations of WD spectra make the
spectrum more rigid [6] so that Σ2(L ) and ∆3(L ) grow
only logarithmically [5].

In Fig. 3 we display Σ2(L ) and ∆3(L ) for Poisson
and WD spectra [5], along with those for the matrix G
for macroscopic composite structures. For sparsely con-
nected systems, these statistics exhibit linear Poisson-like
behavior away from the origin with slope less than their
Poisson counterparts. This linear behavior has been at-
tributed to exponentially decaying correlations of eigen-
values [6]. With increasing connectedness, these statis-
tics transition toward logarithmic WD behavior typical
of the GOE, which has quadratically decaying eigen-
value correlations [6]. Similar to the ESDs in Fig. 2,
for the RRN these statistics also display the symmetry
Σ2(L, p) = Σ2(L, 1− p) and ∆3(L, p) = ∆3(L, 1− p).

Moreover, Fig. 3f suggests that the GOE limit is at-
tained by the long range statistics for the 3D RRN for
all pc ≤ p ≤ 1 − pc. The computed ESDs also appear
to overlie the GOE limit almost exactly for all p values
tested in pc ≤ p ≤ 1 − pc. With this in mind, we recall
the Anderson transition, where low disorder corresponds
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to extended states and WD statistics. When disorder
exceeds a critical level, the states localize and the eigen-
values become de-correlated. We view the 3D RRN with
pc ≤ p ≤ 1−pc to be “ordered” with extended states and
WD statistics. As p decreases, the disorder − or block-
ages to the flow − increases, and the eigenstates localize.
The eigenvectors vj associated with the random N1 ×

N1 sub-matrices of Γ exhibit a connectedness driven tran-
sition in their localization properties. The IPR Ij [28] is
defined as Ij =

∑
i[v

i
j ]

4, i, j = 1, . . . , N1, where vij is
the ith component of vj . Two limiting cases illustrate
the meaning of Ij : (i) a normalized vector with only one
component vij = 1 has Ij = 1; (ii) a vector with identi-

cal components vij = 1/
√
N1 has Ij = 1/N1. Eigenvec-

tors of matrices in the GOE are known to be highly ex-
tended and independent of the distribution of the eigen-
values [27], and the IPR is given by IGOE = 3/N1 [28].
In the matrix setting, the electric field in equation (2)

has the following eigenvector expansion

χ1E = sE0

∑
j

[(s− λj)
−1(vj ·χ1ek)] vj . (3)

This provides a direct link between localized eigenvectors
vj and eigenmodes of χ1E with large magnitudes in only
a few resistors, while extended eigenvectors correspond to
fields extending throughout the network. Fig. 4a shows
the electric field χ1E for the 2D RRN with p = pc = 1/2.
We have plotted the IPR Ij for 2D and 3D RRN, as

functions of λj and j, with increasing j corresponding
to increasing magnitude of λj . Our results have revealed
that the eigenvectors vj delocalize as p increases and
the system becomes increasingly connected. Specifically,
for p≪ pc, the eigenvectors are localized, with values of
Ij much larger than the GOE IPR. Also, Ij is oscilla-
tory as a function of λj , following the peaks and valleys
of “geometric” resonances exhibited by ρ(λ) for small p
[17, 18], with localized regions corresponding to lower
density. This indicates significant correlation between
the eigenvalues and eigenvectors, contrasting the GOE.
As p→ p−c , spectral gaps around the endpoints shrink

and vanish [17, 18], while the Ij continually decrease. As
p surpasses pc and 1 − pc, δ-components form in µ at
λ = 0 and λ = 1, respectively [19]. The δ-component at
λ = 0 is manifested by a large number of λj with magni-
tude . 10−14, followed by an abrupt change of magnitude
& 10−4, with no eigenvalues in the interval (10−14, 10−4),
and similarly for λ = 1. Fig. 4b displays Ij for the 3D
RRN with p = 1− pc ≈ 0.7512, plotted vs. index j. The
locations of the abrupt changes in eigenvalue magnitudes
are identified by red vertical lines, while the GOE IPR
value is identified by the red horizontal line. This fig-
ure demonstrates that eigenvectors associated with the
δ-components at λ = 0, 1 are typically more extended
than others, with Ij values closer to the GOE limit.
This delocalization of the eigenvectors can be seen in

Fig. 4c, which displays the p-dependence of 〈I〉 over all

values of Ij . As p and system connectedness increase,
〈I〉 decreases, with transitional behavior at pc. This
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FIG. 4: Delocalization of eigenvectors. (a) The electric
field χ1E (in log scale) for a realization of the 2D RRN, with
a system size L = 50, volume fraction p = pc = 1/2, and
σ1/σ2 = 4.0× 1010. (b) The IPR Ij plotted versus the index
j = 1, . . . , N1 for a realization of the 3D RRN with L = 12
and p = 1 − pc ≈ 0.7512. The vertical lines define the δ-
components of the spectral measure µ at λ = 0, 1, while the
horizontal line marks the GOE IPR value IGOE = 3/N1. (c)
The p-dependence of the average IPR 〈I〉 for 2D and 3D RRN.

indicates that the eigenvectors (and eigenmodes of E),
become progressively extended throughout the network.
Fig. 4b indicates that this average delocalization is largely
due to the formation of the δ-components in µ at λ = 0, 1.
Fig. 4b also shows that regions of extended states are

separated by “mobility edges” with a sudden increase
in the number of localized eigenvectors, which is analo-
gous to Anderson localization, where mobility edges mark
the characteristic energies of the MIT [5]. Remarkably,
the mobility edges in Fig. 4b are precisely at the loca-
tions of the δ-components (red vertical lines) which con-
trol critical behavior of transport in insulator/conductor
and conductor/superconductor systems [10, 12, 19].

IV. CONCLUSIONS

We have demonstrated that the statistical behavior of
the eigenvalues and eigenvectors of the random matrix
G = χ1Γχ1 governing classical transport through com-
posites – in the absence of wave interference and quantum
effects – undergoes a percolation-driven transition that is
analogous to the Anderson transition in wave physics.
The eigenvalues − or resonances in the bulk transport
coefficients − shift from weakly correlated Poisson-like
statistics toward highly correlated universal WD statis-
tics of the GOE, as a function of order or connectedness.
Correspondingly, the eigenvectors undergo a delocaliza-
tion, with highly extended states appearing at the spec-
tral endpoints, separated by mobility edges of localized
states. The delocalization of eigenvectors corresponds to
an extended transport field, such as the electric field E,
extending throughout the composite near global connect-
edness thresholds. The percolation-driven transition to
repulsive eigenvalue behavior also accounts for the van-
ishing gaps in the spectrum of the spectral measure µ,
which is closely connected to critical behavior of trans-
port. Our results open the door to applying ideas and
methods from Anderson localization to classical trans-
port, and open a new chapter in the application of ran-
dom matrix theory to complex macroscopic systems.
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