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We present general conditions for quantum error suppression for Hamiltonian-based quantum
computation using subsystem codes. This involves encoding the Hamiltonian performing the com-
putation using an error detecting subsystem code and the addition of a penalty term that commutes
with the encoded Hamiltonian. The scheme is general and includes the stabilizer formalism of both
subspace and subsystem codes as special cases. We derive performance bounds and show that com-
plete error suppression results in the large penalty limit. To illustrate the power of subsystem-based
error suppression, we introduce fully 2-local constructions for protection against local errors of the
swap gate of adiabatic gate teleportation and the Ising chain in a transverse field.

A general strategy for protecting quantum informa-
tion is to encode this information into a larger system in
such a way that the effect of the bath is eliminated, sup-
pressed, or corrected [1]. A promising approach for quan-
tum error suppression in Hamiltonian quantum compu-
tation [2–4] was proposed in Ref. [5]. In this scheme one
chooses a stabilizer quantum error detection code [6], en-
codes the Hamiltonian by replacing each of its Pauli op-
erators by the corresponding encoded Pauli operator of
the chosen code, and adds penalty terms (elements of
the code’s stabilizer) that suppress the errors the code
is designed to detect. This results in the suppression of
excitations out of the ground subspace. By indefinitely
increasing the energy scale of the penalty terms this sup-
pression can be made arbitrarily strong [7].

By construction, this encoding necessitates greater
than two-body interactions, which can make its imple-
mentation challenging. An important open question is
whether there exist quantum error suppression schemes
that involve only two-body interactions. However, even
for the special case of quantum memory, invoking penalty
terms but no encoding, two-body commuting Hamiltoni-
ans cannot in general provide suppression [8]. This no-go
result left open the possibility that non-commuting two-
local Hamiltonians might nevertheless suffice for quan-
tum error suppression. Examples based on (generalized)
Bacon-Shor codes [9] were recently given in Ref. [10] to
show that this is the case for penalty terms and encoded
single-qubit operations, and for some encoded two-qubit
interactions, but without general conditions or perfor-
mance bounds.

Here we show how general subsystem codes can be used
for quantum error suppression. Using an exact, non-
perturbative approach, we find conditions that penalty
Hamiltonians should satisfy to guarantee complete error
suppression in the infinite energy penalty limit. We de-
rive performance bounds for finite energy penalties. Our
formulation accounts for stabilizer subspace and subsys-
tem codes as special cases, including the examples of

Refs. [5, 7, 10]. We provide several examples where our
approach results in encoded Hamiltonians and penalty
terms that involve purely two-body interactions [11].
These examples include the swap gate used in adiabatic
gate teleportation [12], and the Ising chain in a trans-
verse field frequently encountered in adiabatic quantum
computation and quantum annealing.

Setting.—We wish to protect a quantum computation
performed by a system with Hamiltonian HS(t) against
the system-bath interaction V =

∑
j Ej ⊗Bj , to a bath

with Hamiltonian HB. We construct the encoded sys-
tem Hamiltonian, HS(t), by replacing every operator in
HS(t) by the corresponding logical operators of a subsys-
tem code [13–15]. The strategy for protecting the com-
putation performed by HS(t) is to add a penalty Hamil-
tonian EpHp, chosen so that [HS(t), Hp] = 0 in order to
prevent interference with the computation [5]. As the en-
ergy penalty Ep is increased, errors should become more
suppressed.

Results in the infinite penalty limit.—We now state our
main results, in the form of two related theorems that
give sufficient conditions for complete error suppression
in the large Ep limit. These results incorporate both
those for general stabilizer penalty Hamiltonians intro-
duced in [5, 7] and the subsystem penalty Hamiltonian
examples introduced in [10]. They are also related to a
dynamical decoupling approach for protecting adiabatic
quantum computation [16] via a formal equivalence found
in Ref. [17].

Let U0, Up, UV , and UW be the unitary evolutions
generated by H0 = HS+HB, EpHp, HV = H0+EpHp+
V , and HW = H0 + EpHp + W , respectively. As will
become clear later, W will play the role of the suppressed
version of V . We assume that ‖V ‖ , ‖W‖ < ∞, where ‖·‖
denotes any unitarily invariant norm [18]. Let P be an
arbitrary projection operator and let Hp =

∑
a λaΠa be

the eigendecomposition of the penalty term.

Theorem 1. Set W = cI (c ∈ R, I is the identity oper-
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ator) and assume that

[HS , P ] = [HS , Hp] = 0 , (1a)∑
a

ΠaVΠaP = cP . (1b)

Then

lim
Ep→∞

‖UV (T )P − UW (T )P‖ = 0 , (2)

where UW (T ) = e−icTU0(T )Up(T ).

Theorem 1 states that in the infinite penalty limit and
over the support of P , the evolution generated by the
total system-bath Hamiltonian HV is indistinguishable
(up to a global phase) from the decoupled evolution gen-
erated by H0 +EpHp. The conditions in Eq. (1a) ensure
compatibility of the subspace defined by P and of the
type of penalty Hamiltonian Hp with the given encoded
Hamiltonian HS . The condition in Eq. (1b) ensures the
absence of a term that cannot be removed by the penalty
[see the Supplementary Material (SM)].

Theorem 2. Set W =
∑

a∈I ΠaVΠa, where I is some
index set. Assume that in addition to Eq. (1a) also P =∑

a∈I Πa. Then Eq. (2) holds again, with

UW (T ) = T exp

∫ T

0

(H0(t) + EpHp +W )dt (3)

(T denotes time-ordering). Theorem 2 is similar to
Theorem 1, except that it allows for a more general tar-
get evolution operator UW (T ). As discussed below, The-
orem 1 is suitable for stabilizer subsystem codes, while
Theorem 2 is suitable for general subsystem codes.
Proof sketch.—Both Theorems 1 and 2 establish the

desired decoupling result, and show that in principle it
is possible to completely protect Hamiltonian quantum
computation against coupling to the bath. To prove them
we define

K(t) =

∫ t

0

U †
p(τ)(V −W )Up(τ)dτP , (4)

and derive the following bounds in the SM:

‖UV (T )P − UW (T )P‖ ≤ ‖K(T )‖ (5a)

+ T sup
t

‖[K(t), H0(t)]‖ + T (‖V ‖+ ‖W‖) sup
t

‖K(t)‖

‖K(t)‖ ≤ 2

Ep

∑
a 6=a′

‖V −W‖
|λa − λa′ | . (5b)

Theorems 1 and 2 follow in the large Ep limit, since
in this limit ‖K(T )‖ → 0, and ‖[K(t), H0(t)]‖ ≤
2‖K(t)‖‖H0‖. An error bound for finite Ep follows di-
rectly from Eq. (5b) (for related results see Refs. [7, 19]).
While a tighter bound may not be possible without intro-
ducing additional assumptions, we note that for a Marko-
vian bath in a thermal state, it is possible to show that

the excitation rate out of the code space is exponen-
tially suppressed as a function of Ep, and Ep need only
grow logarithmically in the system size to achieve a con-
stant excitation rate, assuming the gap of Hp is constant
[5, 20].
Subsystem codes.—Before demonstrating the implica-

tions of Theorems 1 and 2 we first briefly review subsys-
tem codes. Assume that the system’s Hilbert space can
be decomposed as HS = C⊕C⊥, where C = A⊗B. The
channel (completely positive map) E = {Ej} is detectable
on the “information subsystem” B if (see the SM for a
proof):

∀Ej ∃Gj : PCEjPC = PCGj ⊗ IBPC , (6)

where IB is the identity on B and PC denotes the pro-
jector onto C. Here A plays the role of a “gauge subsys-
tem”; the Gj operators are arbitrary and do not affect
the information stored in subsystem B.
Stabilizer subsystem codes [21] are of particular inter-

est. Intuitively, one can think of such codes as subspace
stabilizer codes [6] where some logical qubits and the
corresponding logical operators are not used. A stabi-
lizer code can be defined as the subspace stabilized by
an Abelian group S = 〈S1, ..., Ss〉 of Pauli operators,
with −I /∈ S, where {Si}si=1 are the group generators.
The projector onto the codespace is PC =

∏s

i=1
I+Si

2
.

To induce a subsystem structure we define logical op-
erators L and gauge operators A as Pauli operators
that leave the codespace invariant, and also demand
that the three sets S, L, and A mutually commute.
The generators of L and A can be organized in canon-
ical conjugate pairs: the set of bare logical operators
L = {Z1, X1, ..., Zk, Xk} that preserve the code space
and act trivially on the gauge qubits [22], and the set
of gauge operators A = {Z ′

1, X
′
1, ..., Z

′
r, X

′
r}, where for

A,B ∈ {X,Z} or A,B ∈ {X ′, Z ′} we have [Ai, Bj ] = 0 if
i 6= j, and {Xi, Zi} = 0. The gauge group is defined as
G = 〈S1, ..., Ss, Z

′
1, X

′
1, ..., Z

′
r, X

′
r〉, and is non-Abelian. A

Pauli error Ej is detectable iff it anti-commutes with at
least one of the stabilizer generators [21], or equivalently
iff PCEjPC = 0 [since (I + Si)(I − Si) = 0 ∀i].
Protection using stabilizer codes.—To satisfy the con-

dition [HS , Hp] = 0 in Eq. (1a) we may choose Hp as a
linear combination of elements of the gauge group G (not
necessarily the generators) [10, 23],

Hp =
∑
i

αigi , gi ∈ G , |αi| ≤ 1 , ∀i . (7)

To satisfy the condition [HS , P ] = 0 we may choose
P =

∑
a∈I Πa. Equation (1b) then becomes ΠaVΠa =

cΠa ∀a ∈ I, a condition that is already satisfied with
c = 0 for a stabilizer error detecting code (for which
PCV PC = 0) if the support of P is in the codespace (i.e.,
PPC = PCP = P ). This is true, in particular, if I con-
tains just the ground subspace of Hp. We may thus state
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the following corollary of Theorem 1: For Hp chosen as
in Eq. (7), the joint system-bath evolution completely de-
couples in the large penalty limit for initial states in the
ground subspace of Hp, with this subspace itself being a
subspace of the codespace.

Note that the difference between the subspace and sub-
system case manifests itself in the appearance of Up(T )
in Eq. (2). If the penalty Hamiltonian consisted of only
stabilizer terms [i.e., gi ∈ S ∀i in Eq. (7)], the penalty
Hamiltonian would at most change the overall phase of
states in the codespace. But here, as the elements of
penalty Hamiltonian can be any element of the gauge
group, Up can have a nontrivial effect on states in C.
Nevertheless, as the gauge operators commute with the
logical operators of the code, this unitary does not change
the result of a measurement of the logical subsystem. In
the SM we provide a formal argument using a distance
measure to quantify state distinguishability using gener-
alized measurements restricted to the logical subsystem.

Protection using general subsystem codes.—Choose a
code C with projector PC such that the error-detection
condition (6) is satisfied for all the error operators {Ej}
in V =

∑
j Ej ⊗Bj . Assume that the penalty is chosen

so that [HS , Hp] = 0 in Eq. (1a) holds, and set P = PC in
Theorem 2 (thus also the condition [HS , P ] = 0 holds).
Then ΠaVΠa =

∑
j(ΠaGj ⊗ IBΠa) ⊗ Bj ∀a ∈ I, so

that W =
∑

a∈I

∑
j(ΠaGj ⊗ IBΠa) ⊗ Bj , with trivial

action (IB) on the information subsystemB. The unitary
UW (T ) [Eq. (3)] appearing in Theorem 2 thus has a non-
trivial effect on B only via the H0(t) term, as desired.

Block encoding.—A useful simplification results when
the logical qubits can be partitioned into n separate
blocks. In this case the total penalty Hamiltonian be-
comes Hp =

∑n

i=1 h
i
p, where hi

p =
∑

j α
i
jg

i
j denotes the

penalty Hamiltonian on logical qubit i, with gij ∈ G, and
[hi

p, h
j
p] = 0 for i 6= j. The code space projector becomes

PC = ⊗n
i=1p

i, where pi is the projector onto the code
space of the ith logical qubit. We may also partition the
system-bath interaction according to the logical qubits it
acts on: V =

∑n

i=1 v
i (note that we do not assume that

[vi, vj ] = 0). Clearly, K(t) can also be expressed as a
sum over blocks, as can inequality (5a). Using the eigen-

decomposition hi
p =

∑
a e

i
aπ

i
a, condition (1b) can then be

replaced by

πi
av

iπi
ap

i = cipi ∀a, i . (8)

Using the block encoding structure, in the SM we tighten
the error bound resulting from Eq. (5b). We show, in
particular, that the bound is extensive in the system size
and depends only on the bath degrees of freedom that
couple locally to the system, so that the bound is not
extensive in the bath size.

A simplified sufficient condition.—To check whether
Theorem 1 applies one can simply find the eigendecompo-

sition of hi
p and check if Eq. (8) holds for a given system-

bath interaction and choice of code space. Instead, we
next identify conditions that are less general but are eas-
ier to check. We assume that the interaction Hamiltonian
has the 1-local form V =

∑
i v

i, where vi =
∑

j σ
i
j ⊗Bi

j

and σi
j is an arbitrary non-identity Pauli operator acting

on qubit j in block i. From now on we drop the block
superscript for notational simplicity. Furthermore, we
choose a penalty term that satisfies [hp, p] = 0 given a
code block projector p, which implies [πa, p] = 0 ∀a.
A sufficient condition for Eq. (8), and hence for Theo-

rem 1, is then the following:

Condition 1. hpp and σjhpσjp do not share an eigen-
value for any σj in the support of p.

To see that this is a sufficient condition, we note
that πap and σjπaσjp are both projectors, correspond-
ing to the same eigenvalue ea of hp and σjhpσj . If
both projectors are nonzero then there exists at least
one (nonzero) eigenvector for each of hpp and σjhpσjp
with eigenvalue ea, in contradiction to our condition.
So, the stated condition guarantees that for any eigen-
value ea we have either πap = 0 or σjπaσjp = 0. Thus,
∀a: 0 = (σjπaσjp)(πap) = σjπaσjppπa = σjπaσjpπa =
σj(πaσjπap), so that, ∀a: πaσjπap = 0, which implies

Eq. (8) (with ci = 0 ∀i). We now consider a number of
interesting cases, and show that Condition 1 holds, thus
guaranteeing error suppression via Theorem 1.
Stabilizer penalty Hamiltonians.— As in Ref. [5], let

hp =
∑
i

αiSi (9)

with Si ∈ S, αi 6= 0 and p = pc. Clearly [hp, p] =
0. Let us define aij = 0 or 1 if [Si, σj ] = 0 or
{Si, σj} = 0, respectively. In the support of p (i.e., in
the code space) hpp = (

∑
αi)p, so the eigenvalue of

hp there equals
∑

i αi, while the eigenvalue of σjhpσjp
there equals

∑
i αi(−1)aij . Condition 1 thus requires ∀j:∑

i αi 6=
∑

i αi(−1)aij . When all αi have the same sign
this becomes the familiar error detection condition, that
every σj anticommutes with at least one of the terms in
the sum of stabilizers.
The penalty Hamiltonian considered in Ref. [7] corre-

sponds to hp = I − p, so that [hp, p] = 0 holds. Condi-
tion 1 is also satisfied in this case since since hpp = 0,
while σjhpσjp = p−σjpσjp = p (where we used the error
detection condition pσjp = 0), so in the support of p the
eigenvalues are, respectively, 0 and 1.
Gauge group penalty Hamiltonians.—A family of gen-

eralized Bacon-Shor codes can be identified with a binary
matrix A, which fully characterizes all the code proper-
ties [22]. E.g., each nonzero element of A corresponding
to a qubit on a planar grid, and two ones in a row (col-
umn) of the matrix correspond to an XX (ZZ) genera-
tor acting on the corresponding qubits (see the SM for
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more details). As pointed out in Ref. [10], because of the
locality of the generators of these codes, they are promis-
ing candidates for use in error suppression schemes. We
present several examples for suppressing local errors that
originate from this construction.
(i) The [[4, 1, 2]] code was proposed in Ref. [10] to over-

come the aforementioned no-go theorem for error sup-
pression using 2-local commuting Hamiltonians [8]. Each
qubit is encoded into four qubits using this code (block
encoding), so the entire code corresponds to a block di-
agonal A matrix, with 2 × 2 blocks of all ones. The
stabilizer, gauge and bare logical generators are:

S = 〈S1 = X⊗4, S2 = Z⊗4〉 (10a)

A = {X ′ = X1X2, Z
′ = Z1Z3} (10b)

L = {X = X1X3, Z = Z1Z2} . (10c)

Thus G = 〈S1, S2, X
′, Z ′〉 = 〈S1X

′, S2Z
′, X ′, Z ′〉 =

〈X3X4, Z2Z4, X1X2, Z1Z3〉 ≡ 〈{gi}4i=1〉, i.e., the gener-
ators are 2-local. The penalty Hamiltonian is hp =

Ep

∑4

i=1 gi and again, clearly [hp, p] = 0. One may check
that the eigenvalues of hpp and σjhpσjp are 0,±2Ep and
±2

√
2Ep, respectively (see the SM). Thus Condition 1 is

satisfied. While the penalty Hamiltonian is 2-local, un-
fortunately the encoding of a 2-local interaction (which
is necessary for universal quantum computation), still re-
quires 4-local interactions.
(ii) We show how to encode and protect the adiabatic

swap gate introduced in [12] using purely 2-local inter-
actions. This Hamiltonian is one of the key building
blocks of a proposal for universal quantum computation
using adiabatic gate teleportation. The Hamiltonian is:
H(s) = (1 − s)(XbXc + ZbZc) + s(XaXb + ZaZb). By
slowly increasing s from 0 to 1 any state initially pre-
pared on qubit a transfers onto qubit c. To encode and
protect this Hamiltonian, we use the following [[8, 3, 2]]
subsystem code:

S = 〈S1 = X⊗8, S2 = Z⊗8〉 (11a)

L = {X1 = X1X8, X2 = X1X2X3X8, X3 = X4X5,

Z1 = Z1Z2, Z2 = Z3Z4Z5Z6, Z3 = Z5Z6} (11b)

G = 〈X1X2,X3X4,X5X6,X7X8,Z2Z3,Z4Z5,Z6Z7,Z8Z1〉

The penalty Hamiltonian is the sum of all the gauge
group generators gi ∈ G, which is manifestly 2-local. One
can check that Condition 1 is satisfied for this Hamilto-
nian (see the SM), and so we obtain the desired protec-
tion. The encoded Hamiltonian becomes:

H(s) = (1− s)(X2X3 + Z2Z3) + s(X1X2 + Z1Z2)

= (1− s)(X6X7 + Z3Z4) + s(X2X3 + Z7Z8), (12)

where in the second line we used the fact that X2X3 =
S1X6X7 and Z1Z2 = S2Z7Z8 are equivalent logical op-
erators. Thus, the encoded Hamiltonian remains 2-local.

(iii) Our next example, an open Ising chain in a trans-
verse field, does not involve block encoding:

HS(s) = (1− s)

N∑
i=1

Xi + s

N−1∑
i=1

JiZiZi+1 . (13)

This Hamiltonian appears frequently in adiabatic quan-
tum optimization. The goal is again to provide encoding
and error suppression using only 2-local Hamiltonians.
Using an A-matrix derived [[2N + 2, N, 2]] code (see

the SM for details), we obtain:

Hp = −
N+1∑
i=1

X2i−1X2i +
N∑
i=1

Z2iZ2i+1 + Z1Z2N+2

HS(s) = (1− s)

N∑
i=1

X2iX2i+1 + s

N−1∑
i=1

JiZ2i+1Z2i+2 .

(14)

We have verified numerically that the ground subspace
of Hp is a subspace of the codespace, which as we showed
above is sufficient for error suppression in the stabilizer
case. We also find numerically that the minimum gap of
Hp decreases as 1/(N+1) (see the SM), so that Ep should
grow with N to maintain the protection obtained in this
case as the system size increases, since this gap sepa-
rates the logical ground subspace from the undecodable
excited states. While in general this is undesirable, it is
compatible with examples whereHS (and hence alsoHS)
exhibits more rapidly closing gaps for certain choices of
the couplings {Ji} (e.g., an exponentially small gap [24]).
Non-additive codes.—Theorems 1 and 2 allow us to

go beyond the framework of Ref. [7] and examples of
Ref. [10], and employ non-additive codes (also known as
non-stabilizer codes) to encode and protect evolutions
[25]. Non-additive codes can achieve higher rates (ratio
of the number of encoded to physical qubits) than stabi-
lizer codes [26–29]. For example, using 5 physical qubits
to detect any single-qubit error stabilizer codes can en-
code at most 2 qubits, but using a non-additive code one
can encode up to log2 6 qubits [26]. The encoding pro-
cedure is straightforward. Choosing a subspace code C,
one can expand the system Hamiltonian in a basis {|i〉}
and then replace each basis vector in the expansion with
the corresponding code state {|̄i〉}. One possible choice
of a penalty Hamiltonian is EpHp, where Hp = −PC and
PC =

∑
i∈C |̄i〉〈̄i|. Theorem 1 guarantees that with this

choice, starting from an initial state in the codespace,
leakage out of the codespace is suppressed in the large
Ep limit, and the desired system Hamiltonian is imple-
mented in the codespace with a higher rate than what
could be achieved using stabilizer codes. Moreover, The-
orem 2 allows using non-additive subsystem codes such
as the codes introduced in Ref. [29].
Conclusions.—We have presented conditions guar-

anteeing error suppression for Hamiltonian quantum
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computation using general subsystem error detecting
codes, along with conditions that the corresponding
penalty Hamiltonians should satisfy, and performance
bounds that improve monotonically with increasing en-
ergy penalty. Stabilizer subsystem codes are more flex-
ible than stabilizer subspace codes when there are con-
straints on the spatial locality of the generators of the
code [22]. This allowed us to use these codes to present
examples of fully 2-local encoded Hamiltonian quan-

tum information processing with error suppression. This
should hopefully pave the way towards a similar result for
protected universal Hamiltonian quantum computation.
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