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Despite being forbidden in equilibrium, spontaneous breaking of time translation symmetry can
occur in periodically driven, Floquet systems with discrete time-translation symmetry. The period
of the resulting discrete time crystal is quantized to an integer multiple of the drive period, arising
from a combination of collective synchronization and many body localization. Here, we consider a
simple model for a one dimensional discrete time crystal which explicitly reveals the rigidity of the
emergent oscillations as the drive is varied. We numerically map out its phase diagram and compute
the properties of the dynamical phase transition where the time crystal melts into a trivial Floquet
insulator. Moreover, we demonstrate that the model can be realized with current experimental
technologies and propose a blueprint based upon a one dimensional chain of trapped ions. Using
experimental parameters (featuring long-range interactions), we identify the phase boundaries of
the ion-time-crystal and propose a measurable signature of the symmetry breaking phase transition.

PACS numbers: 73.43.Cd, 37.10.Jk, 05.30.Rt, 72.15.Rn

Spontaneous symmetry breaking—where a quantum
state breaks an underlying symmetry of its parent
Hamiltonian—represents a unifying concept in mod-
ern physics [1, 2]. Its ubiquity spans from condensed
matter and atomic physics to high energy particle
physics; indeed, examples of the phenomenon abound
in nature: superconductors, Bose-Einstein condensates,
(anti)-ferromagnets, any crystal, and Higgs mass gener-
ation for fundamental particles. This diversity seems to
suggest that almost any symmetry can be broken.

Spurred by this notion, and the analogy to spatial crys-
tals, Wilczek proposed the intriguing concept of a “time-
crystal”—a state which spontaneously breaks continuous
time translation symmetry [3–5]. Subsequent work de-
veloped more precise definitions of such time translation
symmetry breaking (TTSB) [6–8] and ultimately led to
a proof of the “absence of (equilibrium) quantum time
crystals” [9]. However, this proof leaves the door open to
TTSB in an intrinsically out-of-equilibrium setting, and
pioneering recent work [10, 11] has demonstrated that
quantum systems subject to periodic driving can indeed
exhibit discrete TTSB [10–13]; such systems develop per-
sistent macroscopic oscillations at an integer multiple of
the driving period, manifesting in a sub-harmonic re-
sponse for physical observables.

An important constraint on symmetry breaking in
many-body Floquet systems is the need for disorder and
localization [10–18]. In the translation-invariant setting,
Floquet eigenstates are short-range correlated and resem-
ble infinite temperature states which cannot exhibit sym-
metry breaking [16, 19, 20]. Under certain conditions,
however, prethermal time-crystal-like dynamics can per-
sist for long times [21, 22] even in the absence of localiza-
tion before ultimately being destroyed by thermalization
[18, 23].

In this Letter, we present three main results. First,
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FIG. 1. (a) Phase diagram of the discrete time crystal as a
function of interaction strength Jz and pulse imperfections ε.
(b) Depicts the location of the sub-harmonic Fourier peak as
a function of ε. In the non-interacting case (Jz = 0), the peak
tracks ε, while in the interacting case (Jz = 0.15), the peak
remains rigidly locked at ω/2. The pink region indicates the
FWHM of the base of the ω/2 peak. Data are obtained at
L = 14 with 102 disorder averages. (c-d) Representative re-
alizations of the sub-harmonic Fourier response correspond-
ing to ε in (b). All Fourier transforms are computed using
10 < n < 150 Floquet periods.

by exploring the interplay between entanglement, many
body localization and TTSB, we produce a phase dia-
gram for a discrete time crystal (DTC) [24]. The DTC,
like other symmetry breaking phases, possess macro-
scopic rigidity and remains locked in its “collective” pe-
riod, displaying a characteristic ‘plateau’ at the location
of its sub-harmonic Fourier response (Fig. 1). This is
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FIG. 2. (a) Level statistics ratio for ε = 0.1 as a function
of Jz. For L = 8 and L = 10, we perform ∼ 104 disorder
realizations and for L = 12, we perform ∼ 103 disorder re-
alizations. There is a clear crossing at Jz ≈ 0.18 indicating
the transition. Additional weak disorder in the interactions,
Jzi ∈ [0, Jz], preserves localization over the same parameter
range (inset). (b) Variance of the ω/2 Fourier peak magnitude
as a function of ε. We observe a clear peak at the transition
which exhibits a nearly linear scaling with increasing Jz.

in stark contrast to free spins, which simply follow the
period dictated by the driving. Second, we compute
the scaling properties of the dynamical quantum criti-
cal point associated with the onset of TTSB, or equiv-
alently the quantum melting of the time-crystal. Third,
we propose an experimental realization of the DTC in a
one dimensional chain of trapped ions. Using experimen-
tal parameters, we identify the phase boundaries of the
DTC and propose a measurable signature of the symme-
try breaking phase transition.

Discrete time crystal—Let us begin by considering a
one dimension spin-1/2 chain governed by the binary
stroboscopic Floquet Hamiltonian (with period T =
T1 + T2),

Hf (t) =

{
H1 ≡ (g − ε)∑i σ

x
i , 0 < t < T1

H2 ≡
∑
i Jzσ

z
i σ

z
i+1 +Bzi σ

z
i , T1 < t < T

(1)
where ~σ are Pauli operators and Bzi ∈ [0,W ] is a random
longitudinal field. To simplify the notation, we choose to
work in units of T1 = T2 = 1, where the Floquet evolution
reduces to: Uf = U2U1 ≡ e−iH2e−iH1 . Throughout the
remainder of the paper, we work with g = π/2 and note
that for generic ε 6= 0, the model does not exhibit any
microscopic symmetries [13].

To gain some intuition for the nature of TTSB in
this model, let us begin with the ideal decoupled limit
where ε = Jz = 0. In the parlance of NMR, this
simple case corresponds to a chain of decoupled spins
undergoing “spin-echo” time evolution. To see this,
let us consider a random initial product state, |ψ〉 =
|↑↓↓↑↓ · · · 〉, aligned along the ẑ direction. The spin-
echo unitary, U1 = e−iπ/2

∑
i σ

x
i , flips each spin about

the x̂-axis, resulting in the oppositely polarized state,
|ψ1〉 = |↓↑↑↓↑ · · · 〉. The second unitary results in only
a global phase, φ, as each spin is already aligned along
ẑ, |ψ2〉 = eiφ |↓↑↑↓↑ · · · 〉. Since each spin is flipped once
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FIG. 3. (a) Finite size flow of the mutual information between
spins on opposite ends of a length L chain. For small detun-
ing, ε ≈ 0, there is nearly full I = log 2, long range mutual in-
formation, which drops dramatically upon leaving the TTSB
phase for large ε. (b-d) Scaling collapse of I to the functional
form 1

Lβ
f( L
|ε−εc|−ν

) optimized over the parameters β and ν.

Insets depict the collapsed data with a semi-logarithmic y-
axis. Averaging over all Jz yields numerical estimates for the
critical exponents: βED ≈ 0.4 ± 0.1, and νED ≈ 1.3 ± 0.1;
we note that the error bar associated with these exponents
ignores the ambiguity in the location of the transition.

per Floquet period, measuring a simple auto-correlation
function, R(t) = 〈σzi (t)σzi (0)〉, at stroboscopic times
(e.g. T, 2T, · · · ) yields a perfect train of oscillations [25].
These oscillations imply that R(t) is 2T periodic, a fact
best captured by its sub-harmonic Fourier response at
ω/2—half the binary drive frequency (Fig. 1c). This
seems to fit the picture of TTSB and raises the ques-
tion: are decoupled spins undergoing “spin-echo” a dis-
crete time crystal? The answer lies in the lack of stability
to perturbations [22, 26, 27]. In this decoupled limit, any
imperfection in the spin-echo pulse (e.g. ε 6= 0) immedi-
ately destroys the ω/2 sub-harmonic. In particular, for
ε > 0, the unitary, U1 = e−i(π/2−ε)

∑
i σ

x
i , leads to beating

in R(t) and a splitting of the ω/2 Fourier peak (Fig. 1c).

Turning on sufficiently strong Ising interaction (Jz >
0) leads to a qualitatively different story [10–13, 21]. For
perfect echo pulses (ε = 0), the autocorrelation function
looks identical to the decoupled case, exhibiting the same
normalized Fourier peak at ω/2 (Fig. 1d). Crucially, im-
perfections (ε > 0) no longer lead to a splitting of the ω/2
Fourier peak, demonstrating the robustness of the sys-
tem’s sub-harmonic response (Fig. 1d). Herein lies the
essence of the discrete time crystal—despite imperfect
spin-rotations, collective synchronization from the inter-
actions maintains robust oscillations at half the driving
frequency. This rigidity is evinced in Fig. 1b [28], where
the location of the normalized Fourier peak is plotted as
a function of ε; for finite interactions, this peak is locked
at precisely ω/2
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To explore the phase diagram of the discrete time crys-
tal, we perform extensive numerical simulations to probe
both the localization and symmetry breaking phase tran-
sitions [29]. We work at maximal disorder W = 2π;
unlike equilibrium systems, the periodicity of the Flo-
quet unitary limits the strength of the disorder poten-
tial. As the DTC is only stable in the presence of lo-
calization, we begin by characterizing the MBL tran-
sition via the quasi-energy level statistics ratio, 〈r〉 =
min(δn, δn+1)/max(δn, δn+1), where δn = En+1 − En is
the nth quasi-energy gap [10, 30]. Figure 2a depicts 〈r〉
as a function of Jz for ε = 0.1, where one observes a clear
transition at Jz ≈ 0.18. The evolution of this thermal-
ization transition point for general Jz and ε is shown in
Figure 1a (green line). Interestingly, the transition ex-
hibits a weak flow toward larger Jz at small ε, consistent
with the integrability of ε = 0 line.

That the thermalization transition occurs for such
weak interactions (more than an order of magnitude
smaller than the disorder width) is somewhat surpris-
ing; a simple explanation may be that the (imperfect)
spin-echo unitary, which flips each spin by approximately
180o, is nearly canceling the random field between the
two pieces of the binary drive, leading to effectively
weaker disorder. This is consistent with our observation
that turning on additional disorder (Jzi ∈ [0, Jz]) in the
Ising interactions, which are invariant under a uniform
spin rotation, leads to a significantly enhanced region of
localization (Fig. 2a, inset).

Let us now turn to diagnosing the TTSB transition,
which enables us to establish the existence of the dis-
crete time crystal phase and locate its phase boundaries.
We will use a combination of four signatures (at infinite
temperature): 1) magnitude, 2) variance, and 3) expo-
nential (in system size) persistence—of the sub-harmonic
Fourier peak, and 4) mutual information between distant
sites [11]. We note that a number of other probes of the
DTC phase have also been proposed, including certain
eigenstate correlations and responses [13].

We have already encountered the first signature while
probing the rigidity of the ω/2 sub-harmonic response.
As one increases the strength of the drive imperfections,
ε, the magnitude, h, of the ω/2 peak decreases (Fig. 1d)
and eventually becomes completely washed out when one
transitions into the trivial paramagnet [25]. The second
signature originates from strong critical fluctuations in h
near the TTSB transition. This results in a sharp peak
in the variance of h and enables one to quantitatively lo-
cate the transition in moderate system sizes. As shown
in Fig. 2b, increasing Jz strengthens the rigidity of the
DTC, shifting the melting transition toward larger de-
tuning, ε. We identify the third signature by computing
the finite-time-scale where the ω/2 Fourier peak drops
below amplitude 0.05; in the DTC phase, this time scale
increases exponentially in system size, while in the trivial
phase, it exhibits a significantly weaker dependence [11–
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FIG. 4. Trapped Ion Discrete Time Crystal—Variance of the
ω/2 Fourier peak magnitude as a function of ε for power-
law Ising interactions with α = 1.5 and L = 10. Unlike the
previous case, here, to mimic the experimental scenario, we
begin with the same high-energy-density initial state for all
simulations, namely, a polarized product state along ẑ. The
location of the TTSB transition can clearly be seen by the
peaking of Var(h). The top right inset illustrates a schematic
of a one dimensional chain of trapped ions interacting via
long-range power law interactions. The top left inset depicts
the DTC phase diagram for α = 1.5.

13]. The final signature (Fig. 3) relates to the long-range
mutual information [11] and will be discussed below in
the context of the critical scaling properties of the TTSB
transition. As illustrated in Fig. 1a, the combination of
these four diagnostics allows us to establish the TTSB
transition point as a function of Jz and ε (blue line).

Quantum melting transition—Having mapped out the
phase diagram of the DTC, we turn to an analysis of the
critical properties of the TTSB transition [25, 31]. We
obtain the universal scaling properties of this dynamical
quantum phase transition by mapping the Floquet evo-
lution to a “hidden” effective static Ising model whose
excited state critical properties can be exactly obtained
by renormalization group methods [32–36]. Though the
TTSB transition falls into the random Ising universality
class, we will see that the hidden character of the Ising
model introduces notable differences in physical scaling
properties.

For simplicity, our analytic analysis will be performed
in a model where the TTSB transition is tuned via trans-
verse fields instead of spin-echo imperfections (e.g. ε = 0)
[11–13]. While the conclusions will be identical, this
approach allows us to compute the effect of U1 exactly
and then to treat U2 in a high frequency expansion for
JzT, | ~B|T � 1. To this end, we consider a modified
H2 → H ′2 =

∑
i Jzσ

z
i σ

z
i+1 +

∑
α=x,y,z B

α
i σ

α
i , where Bx

controls the transition and By is added to avoid uninten-
tional microscopic symmetries [13].

This model exhibits a hidden emergent Ising symmetry
S̃ [13], and is in fact, related by a finite depth unitary
transformation, UFD, to a driven transverse field Ising
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model with By,z = 0. In particular, UFDU(T )U†FD =

e−iHTFIMT
∏
i σ

i
x, where HTFIM =

∑
i J̃

z
i σ

z
i σ

z
i+1 + B̃xi σ

x
i

has a conventional (e.g. onsite and Hamiltonian indepen-
dent) symmetry S =

∏
i σ

x
i , and J̃zi , B̃xi are spatially ran-

dom quantities, given the disordered character of UFD.

To probe the nature of the TTSB transition, our strat-
egy is to consider time-evolution for two Floquet periods,
U(2T ) = U†FDe

−2iHTFIMTUFD. Crucially, unlike U(T ),
this unitary takes the form of evolution under a local
transverse field Ising Hamiltonian. Since long-time evolu-
tion can always be decomposed into repeated evolutions
by U(2T ) followed by partial evolution for up to a single
period, the late-time properties of the system are gov-
erned by those of the excited eigenstates of HTFIM. For
strong disorder, these states exhibit a non-ergodic quan-
tum phase transition between a trivial MBL phase and
an Ising symmetry breaking magnetic glass phase. Thus,
the Z2 discrete time-crystal melting transition, at strong
disorder, falls into the universality class of a “hidden”
random Ising transition [32–35].

A few remarks are in order. The key difference be-
tween this “hidden” Ising transition and the conven-
tional transition is the following: The scaling fields,
Σα of this “hidden” Ising transition, i.e. those that ex-
hibit 〈Σα(r)Σβ(0)〉 =

δαβ
r2∆α (where the overbar indi-

cates disorder averaging), are related to those of HTFIM

by UFD. Due to the absence of any microscopic sym-
metries in the underlying DTC Hamiltonian, the orig-
inal spins will generically have overlap with all scaling
fields: σµi =

∑
i,j,α c

µ
ij,αΣαj (µ = x, y, z) where cµij,α

are non-universal coefficients that depend on the mi-
croscopic details of the lattice and decay exponentially
in |i − j|. Thus, generic spin-spin correlation functions
will also pick up contributions from all scaling fields:

〈σµi σνj 〉 =
∑
i′j′α c

(µ)
ii′,αc

(ν)
jj′,α

1
|ri′j′ |2∆α ≈ 1

|i−j|2∆α∗
. For

large separations, the decay of these correlation functions
will be dominated by the scaling field, α∗, with the slow-
est decay (i.e. minimal scaling dimension, ∆α∗). In the
case of the 1D random Ising transition, the magnetiza-
tion has the slowest decay ∼ 1/rβ , where β = 2− ϕ and

ϕ = 1+
√

5
2 is the Golden ratio [32].

Due to the strong randomness character of the tran-
sition, there is a marked difference between the mean
scaling behavior just discussed and the typical scaling
behavior. Indeed, the 1/r2−ϕ power-law behavior of all
local mean correlation functions results from rare regions
that are unusually large, well-ordered and dominate the
average [32]. Typical correlation functions, on the other
hand, all decay significantly faster than any power law,
namely, as a stretched exponential: 〈Σα(r)Σβ(0)〉typ ∼
δαβe

−
√
r. Similarly, the typical and mean scaling prop-

erties will also be governed by two different diverging
length-scales: ξtyp ∼ |ε− εc|−νtyp and ξavg ∼ |ε− εc|−νavg ,
with correlation length exponents, νtyp = 1 and νavg = 2.

While the above discussion focuses on critical eigen-

state properties, in an experiment, one is interested in
manifestations of criticality in dynamical signatures. To
this end, one can examine the critical temporal decay
of the aforementioned ω/2 Fourier peak. A sharp defini-
tion of this mixed time/frequency object can be obtained
through the Wigner distribution function: Cab(ω0, t) ≡∫∞

0
dτe−iω0τ 〈σa(t+τ)σb(τ)〉, which, due to the “hidden”

Ising structure of the transition will decay asymptotically
as the slowest decaying scaling field [33]:

Cab
(
ω0 =

ω

2
, t
)
∼ 1

log2−ϕ t
. (2)

This logarithmically slow decay contrasts with both the
power-law decay characteristic of trivial MBL phases,
CabMBL ∼ t−p and the exponential decay characteristic
of a thermalizing system, Cabthermal ∼ e−t [37].
Critical scaling of mutual information—Having eluci-

dated the scaling structure of the TTSB transition, we
now perform a numerical exploration of the time-crystal-
melting transition for the original model [Eqn. 1]. In
particular, we compute the mutual information, I(L),
between the first and last site of the spin chain as a func-
tion of ε for fixed Jz (Fig. 3) [11]. As depicted in Fig. 3a,
the mutual information exhibits a clear finite size flow,
sharpening with increasing system size. To explore the
critical properties of the transition, we conduct a finite
size scaling analysis of this data, based on our analytic
understanding of the transition. In analogy to the dis-
ordered Ising transition, the TTSB critical point can be
viewed as having a broad distribution of nearly ordered
time-crystal clusters. The mutual information between
two spins separated by L is of order unity when they
belong to the same cluster and exponentially small oth-
erwise. Hence, at criticality, I(L) tracks the probability
for two spins to be in the same cluster, which scales as
∼ L−β [32]. For ε ≈ εc near the transition, the mutual
information will then follow the universal scaling form:
I ∼ 1

Lβ
f(L/ξ), where ξ ∼ |ε − εc|−ν is the correlation

length of the incipient time-crystal order.
In Fig. 3b-d, we perform a two parameter scaling col-

lapse on the numerical data for I, by plotting Lβ I(L)
versus (ε − εc)L

1/ν . Tuning β and ν to collapse the
various system sizes near the critical point, we obtain
βED ≈ 0.4 ± 0.1 and νED ≈ 1.3 ± 0.1 (averaged across
all interaction strengths Jz) [25]. These fits are consis-
tent with the exact analytic expression for β. The value
of νED lies between the expected typical and mean val-
ues, likely reflecting the limitations of our small system
sizes for capturing rare fluctuations that give νavg = 2 in
macroscopic systems.
Experimental Realization—We now propose a simple

experimental blueprint for the implementation of a dis-
crete time crystal in a one dimensional array of trapped
ions [38–40]. In such systems, the spin degree of freedom
can be formed from two internal electronic states within
each ion; an effective transverse field, HT = Ω

∑
i σ

x
i ,
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can then be realized via resonant microwave radiation
between these electronic states [39, 40]. Coulomb re-
pulsion between the ions stabilizes a crystalline config-
uration and interactions between the spins are gener-
ated via off-resonant laser fields that couple each spin
with either longitudinal or transverse phonon modes
[41]. This produces long-range Ising-type interactions,
Hint =

∑
ij Jij/r

α
ijσ

z
i σ

z
j , between the spins which fall off

as a tunable power-law, with 0 < α < 3 (Fig. 4) [40, 41].
Finally, a disorder potential can be generated via either
individual ion addressing or a 1D optical speckle poten-
tial that leads to randomized AC Stark shifts [42, 43]. In
combination, these above ingredients enable the direct
realization of a power-law generalization of Eqn. 1,

U ion =

{
U ion

1 = e−iΩ
∑
i σ

x
i t1

U ion
2 = e−i(

∑
ij Jij/r

α
ijσ

z
i σ
z
j+Bzi σ

z
i )t2

(3)

where the nearest neighbor Ising interaction is replaced
by Hint and {t1, t2} represent tunable evolution times.
We emphasize that our proposed realization can likewise
be naturally implemented in ultracold polar molecules
[44, 45] and Rydberg-dressed neutral atom arrays [46,
47], both of which also feature long-range interactions.

This leads to a key question: can the discrete time
crystal survive the presence of such long-range interac-
tions [48–50]? To quantitatively probe the effect of the
long-range power law and the existence of a DTC phase
in trapped ions, we perform a numerical study of U ion

with α = 1.5 [51]. Diagnosing the MBL transition,
one finds that long-range interactions disfavor localiza-
tion and the MBL transition shifts significantly toward
smaller Jz (Fig. 1a, red line) [25]. We note that many-
body resonance counting suggests a critical power law,
αc = 3/2 in one-dimension [50], although this delocaliza-
tion is expected to emerge only for very large systems,
and we do not find evidence of such critical delocalization
in our simulations.

Interestingly, within the localized phase, power-law in-
teractions seem to better stabilize the DTC phase [25]. In
particular, starting from a fully polarized product state
aligned along ẑ, we again compute the variance of h as a
function of ε. As illustrated in Fig. 4, the transition as de-
termined from the peaking of Var(h) is weakly enhanced
when compared to the short-range case, leading to a mod-
ified phase diagram (Fig. 4, inset). These results suggest
that a trapped ion quantum simulator can naturally real-
ize a discrete time crystal phase, even in the presence of
long-range interactions. Moreover, within current coher-
ence times [40], one can observe ∼ 102 Floquet periods,
sufficient to detect both the DTC’s sub-harmonic rigidity
and to probe its TTSB transition via Var(h).

In summary, we have introduced a simple, one dimen-
sional disordered Floquet system that exhibits a robust
discrete time crystal phase. We characterize this phase
via several diagnostics including the rigidity of the emer-

gent sub-harmonic frequency to changes/imperfections in
the driving. Moreover, we develop a theory of the melt-
ing transition from the time crystal into the trivial Flo-
quet paramagnet and utilize this to conjecture a scaling
form for the mutual information. Finally, we propose
a realization of the discrete time crystal in a 1D array
of long-range-interacting trapped ions and demonstrate
that signatures of both the DTC phase and the TTSB
transition can be directly observed with current experi-
mental technologies.
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and the Miller Institute for Basic Research in Science.
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[37] M. Serbyn, Z. Papić, and D. A. Abanin, Physical review

letters 111, 127201 (2013).
[38] K. Kim, M.-S. Chang, S. Korenblit, R. Islam, E. Ed-

wards, J. Freericks, G.-D. Lin, L.-M. Duan, and C. Mon-
roe, Nature 465, 590 (2010).

[39] R. Blatt and C. Roos, Nature Physics 8, 277 (2012).
[40] J. Smith, A. Lee, P. Richerme, B. Neyenhuis, P. W. Hess,

P. Hauke, M. Heyl, D. A. Huse, and C. Monroe, arXiv
preprint arXiv:1508.07026 (2015).

[41] S. Korenblit, D. Kafri, W. C. Campbell, R. Islam, E. E.
Edwards, Z.-X. Gong, G.-D. Lin, L. Duan, J. Kim,
K. Kim, et al., New Journal of Physics 14, 095024 (2012).

[42] M. White, M. Pasienski, D. McKay, S. Zhou, D. Ceperley,
and B. DeMarco, Physical Review Letters 102, 055301
(2009).

[43] S. Kondov, W. McGehee, W. Xu, and B. DeMarco, Phys-
ical review letters 114, 083002 (2015).

[44] B. Yan, S. A. Moses, B. Gadway, J. P. Covey, K. R.

Hazzard, A. M. Rey, D. S. Jin, and J. Ye, Nature 501,
521 (2013).

[45] K. R. Hazzard, B. Gadway, M. Foss-Feig, B. Yan, S. A.
Moses, J. P. Covey, N. Y. Yao, M. D. Lukin, J. Ye, D. S.
Jin, et al., Physical review letters 113, 195302 (2014).

[46] J. Zeiher, R. van Bijnen, P. Schauß, S. Hild, J.-y.
Choi, T. Pohl, I. Bloch, and C. Gross, arXiv preprint
arXiv:1602.06313 (2016).

[47] M. Endres, H. Bernien, A. Keesling, H. Levine, E. R.
Anschuetz, A. Krajenbrink, C. Senko, V. Vuletic,
M. Greiner, and M. D. Lukin, arXiv preprint
arXiv:1607.03044 (2016).

[48] A. L. Burin, arXiv preprint cond-mat/0611387 (2006).
[49] N. Y. Yao, C. R. Laumann, S. Gopalakrishnan, M. Knap,

M. Mueller, E. A. Demler, and M. D. Lukin, Physical
review letters 113, 243002 (2014).

[50] A. L. Burin, Physical Review B 92, 104428 (2015).
[51] To compare with the original model, we set t1 = t2 = 1,

Ω = g − ε, nearest neighbor Jij = Jz, and Bzi ∈ [0, 2π].
Inhomogeneities in the spacing of the experimental ion
crystal [40] lead to slight modifications in the power law
and to this end, we use a coupling matrix that accounts
for these in inhomogeneities.

[52] A. Chandran and S. L. Sondhi, Physical Review B 93,
174305 (2016).

[53] W. De Roeck and F. Huveneers, arXiv preprint
arXiv:1608.01815 (2016).

[54] V. Khemani, D. Huse. Private communication (2016).


	Discrete time crystals: rigidity, criticality, and realizations
	Abstract
	References


