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In nature a large number of species can coexist on a small number of shared resources, however
resource-competition models predict that the number of species in steady coexistence cannot exceed
the number of resources. Motivated by recent studies of phytoplankton, we introduce trade-offs into
a resource-competition model, and find that an unlimited number of species can coexist. Our model
spontaneously reproduces several notable features of natural ecosystems including keystone species
and population dynamics and abundances characteristic of neutral theory, despite an underlying
non-neutral competition for resources.

PACS numbers: 87.23.Cc

An astonishing characteristic of life on Earth is its
great variety. In tropical rainforests more than 300 tree
species may be found on a single hectare [1], while in one
gram of soil the number of distinct microbial genomes
has been estimated at ∼ 2000 – 18,000 [2]. Explaining
this great biodiversity has been a main focus of research
in ecology. One major conceptual challenge is embodied
by the so-called “paradox of the plankton” [3]: In the
framework of simple resource-competition models, it has
been argued that the number of species indefinitely coex-
isting cannot exceed the number of resources [4–7]. Yet
in apparent contradiction to this theory, which is known
as the competitive exclusion principle [8], some marine
ecosystems host a hundred or more coexisting species of
phytoplankton [9] competing for only a handful of abiotic
nutrients [10].

The limit on diversity set by the competitive exclu-
sion principle could be overcome in many possible ways.
Even within simple resource-competition models, diverse
populations may emerge from intrinsically oscillatory or
chaotic dynamics [11, 12], though the stability of such so-
lutions in the face of long-term evolution has been chal-
lenged [13]. Looking beyond resource competition, there
are many proposed mechanisms for diversity, generally
falling into three (non-exclusive) categories: (1) Systems
never approach steady state due to temporal variation
of the environment, e.g. weather changes [3, 14] or sea-
sonal cycles [15]. (2) Real environments are heteroge-
neous in space, e.g. due to environmental gradients such
as temperature, salinity, or exposure to light [16]. (3)
Ecosystems are limited by factors other than resources,
e.g. predation [17, 18] or self-limiting toxin production
[19]. (For reviews see [20, 21].)

While the above mechanisms are likely all broadly rel-
evant, in the context of phytoplankton it was recently
suggested that diversity may also persist due to trade-
offs between different traits or abilities [22]. With this
in mind, we present a simple resource-competition model

in which species are constrained by a trade-off between
their different resource utilization abilities. In this model,
organisms collectively shape the resource concentrations
around them to produce a state equally favorable for all,
and hence an unlimited number of species can coexist.
While the model is highly simplified, it highlights how
both trade-offs and environmental shaping can contribute
to ecological diversity.

We employ a classical resource-competition model [23]
to investigate the population dynamics of m species com-
peting for p types of nutrients. A “species” σ is specified
by its metabolic strategy, namely the coefficients of its
rate of utilization of each nutrient: ~ασ = (ασ1, . . . , ασp).
Conceptually, ασi is proportional to the number of en-
zyme molecules allocated by the organism to importing
and processing nutrient i. We assume that enzymes for
different nutrients may have different costs wi, but to
reflect “trade-offs”, all organisms have the same fixed
enzyme budget:

∑p
i=1 wiασi = E.

We further assume a well-mixed system such that the
concentration of nutrients is homogeneous, and is deter-
mined by the nutrient supply rates ~s = (s1, . . . , sp), by
the uptake of nutrients by organisms, and by a degra-
dation/loss rate µi. We denote the per-enzyme rate of
consumption of nutrient i by ri. A relevant choice for
ri is the Monod function ci/(Ki + ci), but it can be any
monotone increasing, continuously differentiable function
of ci with ri(0) = 0. The kinetics of nutrient concentra-
tion ci is therefore given by

dci
dt

= si −

(∑
σ

nσ(t)ασi

)
ri(ci)− µi ci(t), (1)

where nσ is the population of species σ. Since metabolic
reactions typically occur on a faster time scale than cell
division, we assume a separation of these time scales.
It follows that nutrient concentrations satisfy the flux-
balance equations dci/dt = 0, and the quasi-steady-state
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nutrient concentrations ci(t) are functions of the popula-
tion sizes nσ(t).

We assume that cell growth is resource limited, and
that in principle different nutrients have different “val-
ues” vi, i.e. they make different contributions to biomass
production. The overall growth-rate function of a cell
type σ is therefore given by

gσ(c1, . . . , cp) =

p∑
i=1

viασiri(ci). (2)

Finally, the population dynamics is given by a set of
ordinary differential equations describing each species’
growth:

dnσ
dt

= (gσ(c1, . . . , cp)− δ)nσ, (3)

where δ denotes a constant death rate. We see that the
dynamics of different species are coupled through the nu-
trient concentrations ci(t).

For clarity in what follows, we simplify some of the pa-
rameters, but our basic results hold for the general case
presented above (see Supplemental Material [24]). First,
since in physically relevant cases the nutrient degrada-
tion/loss rate µi is several orders smaller than the influx
rates at which nutrients are supplied, we set µi = 0.
Using this and the separation of time scales, the quasi-
steady-state per-enzyme uptake rates ri are fixed by (1)
to be independent of the ci, and hence equation (2) does
not depend on the specific form of ri. Second, unless oth-
erwise specified, we consider the symmetric case where
all nutrients are equally costly to import and process
(wi = 1), equally accessible (Ki = 1), and equally valu-
able (vi = 1). With these simplifications the growth
equation (2) becomes

dnσ
dt

=

(
p∑
i=1

ασi
si∑

σ′ nσ′ασ′i
− δ

)
nσ. (4)

If we add equations (4) together for all species σ, we find
that the total population ntot =

∑
σ nσ obeys ṅtot =

S−δ ntot, where S =
∑p
i=1 si is the total nutrient supply.

Therefore at steady state the total population is always
n∗tot = S/δ.

Within the framework of our model, we ask the follow-
ing questions: Starting from an initial mixed population
of species, how diverse will the community be at long
times? How does the outcome depend on the species
present and the supply of nutrients? Finally, how stable
will the outcome be if the populations are disturbed or
the supply of nutrients is changed?

We tackle these questions using both analytics and nu-
merical simulations obtained by numerically solving the
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FIG. 1. Schematic of model with two species competing for
three resources. Resources are steadily and homogeneously
supplied to the environment with rates ~s = (s1, s2, s3). Dif-
ferent “species”, i.e. different metabolic strategies, are defined
by their specific distributions of enzymes for resource utiliza-
tion. Since the total number of enzymes a species produces is
subject to the budget constraint

∑p
i=1 ασi = E, each species

can be represented by a point on the triangle, in the space of
resource utilization rates (α1, α2, α3). To indicate the nutri-
ent supply in the triangle, we show ~sα = (E/S)~s with a black
diamond.

system of ODEs in (4). While the analytics pertain to an
arbitrary number p of resources, the population dynam-
ics simulations were performed for just three resources
for clarity. As shown in Fig. 1, the latter allows for “sim-
plex plots” that specify both the species σ (colored dots)
and the nutrient supply conditions (black diamonds).
This can be done because, due to the budget constraint∑p
i=1 ασi = E, the species occupy a p − 1 dimensional

simplex in the space of uptake rates (α1, . . . , αp). To in-
dicate the nutrient supply in this same simplex, we show
~sα = (E/S)~s with a black diamond.

First, we consider starting with as many species as re-
sources. From simulations we find that any collection of
the initial species may survive, depending on the nutri-
ent supply, and that final populations are independent
of initial populations. This is illustrated with exam-
ples in Fig. 2. To show final outcomes, the left panel
of Fig. 2(d) was created by locating the population fixed
points of (4). Since for each nutrient supply ~sα, there
is exactly one stable fixed point, a color was assigned to
~sα based on which species comprise this stable steady
state. Looking at the corresponding dynamics of nutri-
ent concentrations, we observed that extinctions happen
when particular nutrient concentrations become too low
for particular species to survive, and their populations
decay toward zero. E.g. in Fig. 2(a), the system tends
to uneven nutrient concentrations for which the growth
rate (2) of both green and blue species is smaller than
the death rate δ, hence they die out. Alternatively, for
supply conditions under which no extinctions occur, the
system is driven to a state of balanced nutrient concen-
trations, c∗1 = c∗2 = c∗3, where all species are equally fit
by (2). The steady-state nutrient concentrations are dis-
played in the right panel of Fig. 2(d), where each ~sα is
assigned an RGB color by adding together red, green,
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and blue with intensities proportional to c∗1, c∗2, and c∗3,
respectively.
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FIG. 2. Outcomes of a three-species competition, i.e. three
distinct metabolic strategies compete, for three steadily sup-
plied resources. (a-c) Three illustrative examples of competi-
tion among the same three species, represented by the three
colored points in all panels. Simulated population dynamics,
starting from equal populations, is shown for three different
steady nutrient supplies: the appropriately normalized supply
rate of nutrients is indicated by the black diamonds. (d) The
left triangle shows which of the three species survive for dif-
ferent values of the nutrient supply ~sα: the red/green/blue
species drives both others to extinction if ~sα lies in the
red/green/blue regions; the red&green/green&blue/blue&red
species eradicate the third species if ~sα lies in the or-
ange/cyan/purple region; all three species coexist if ~sα lies
in the gray region. The right triangle shows the colormap
of the corresponding steady-state concentrations of resources:
the color is a mixture of red, green, and blue with proportions
c∗1 : c∗2 : c∗3. If ~sα lies outside the convex hull of the species,
the steady-state nutrient concentrations mirror the propor-
tions in which they are supplied. However, if ~sα lies within
the convex hull of the species, the steady-state concentrations
always reach c∗1 = c∗2 = c∗3.

What happens when the number of initial species is
greater than the number of resources? As before, we
observe two very different behaviors of the system: nu-
trient concentrations are either driven to unequal values,
in which case extinctions occur and at most p−1 species
survive, or, alternatively, nutrient concentrations are bal-
anced, c∗1 = . . . = c∗p, and all species coexist. Mathemati-
cally, the outcome depends on whether the nutrient sup-
ply ~sα is outside or inside the convex hull of the species

~ασ. (The convex hull of points in a plane can be visu-
alized as a stretched rubber band that encloses all the
points.) Interestingly, if the nutrient supply lies within
this convex hull, competitive exclusion does not apply.
Instead the species “cooperate” in creating an environ-
ment equally favorable for all, and an unlimited number
of species can coexist. An example is given in Fig. 3,
where the appearance of a new species (from (a) to (b))
expands the convex hull of strategies to include the nu-
trient supply, and consequently coexistence is achieved.
Note that this new strategy acts as a “keystone” species,
since its disappearance would entail a mass extinction.
Its role in shaping the environment is essential to coex-
istence.
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FIG. 3. Outcomes of many species competing for three
steadily supplied resources. (a) The triangle shows the com-
peting species. The black diamond is the (appropriately nor-
malized) supply rate of nutrients. The graph shows simulated
population dynamics starting from equal populations of each
species. The populations of all species except one decay to
extinction. (b) Same as (a) but with one additional species
(orange). All species now coexist, as the black diamond now
lies within the convex hull of the metabolic strategies.

The convex hull condition for coexistence can be shown
analytically (see Supplemental Material [24]). Moreover,
if the nutrient supply ~sα is within the convex hull of the
species ~ασ, then the non-empty set of populations{

n∗1 > 0, . . . , n∗
m > 0 : n∗1~α1 + . . .+ n∗m~αm =

E

δ
~s

}
(5)

comprises fixed points of (4), and this set is an attractor
(see Supplemental Material [24]). Hence, when there are
more species than resources, the system converges to a
point in (5) that depends on the initial populations.

How robust is the multispecies coexistence found in
our model? In particular, we ask whether coexistence
can withstand disturbances in populations or changes in
nutrient supply. As mentioned, the set (5) is an attrac-
tor of the population dynamics (4), hence if steady-state
populations are perturbed, the system will return to (5),
preserving coexistence (albeit the individual populations
may differ if the number of species exceeds the number
of resources, m−p > 0). Similarly, if the nutrient supply
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is changed, the community will survive provided ~sα stays
within the convex hull of strategies: the species present
will establish a new equilibrium by adjusting their pop-
ulation sizes, and coexistence will be preserved.

What about more dramatic variations in nutrient sup-
ply? To test for coexistence in the face of strongly
fluctuating resource availability, we imposed a time-
dependent nutrient supply ~s(t). Specifically, we simu-
lated the population dynamics for a supply that regularly
changes, at fixed time interval tw, to a new, randomly
selected ~s, keeping the total nutrient supply constant,
i.e.

∑p
i=1 si(t) = S. Each new ~s was chosen indepen-

dently from a fixed sampling distribution (see Figs. S1
and S2 in Supplemental Material [24]). In analogy to the
case of fixed nutrient supply, we find that a collection
of species coexist if and only if the appropriately nor-
malized mean nutrient supply 〈~sα〉 lies within the convex
hull of the species present. This can be proven for the
case of two species competing for two nutrients and an
arbitrary sampling distribution (see Supplemental Mate-
rial [24]). Note that although, mathematically speaking,
coexistence of species is independent of the length of the
time interval tw, as we increase tw, fluctuations in popu-
lation sizes increase, potentially crossing a practical ex-
tinction threshold (e.g. one organism) for very long time
intervals tw.

A central feature of our model is that when nu-
trient concentrations are driven to equal values, all
species become equally fit. This motivates a compari-
son to the neutral theory of biodiversity [25]. In neu-
tral theory all species are identical in terms of fitness,
and thus biodiversity emerges not from niche differ-
ences, but from random births and deaths of individ-
uals and random immigration of new species. To fa-
cilitate comparison, we therefore introduce a stochastic
birth-death-immigration process: starting from a fixed
initial population ~n such that ntot = S, and a fixed
species immigration probability ν, at each time step (1)
a random individual dies according to the probabilities
P (an individual from species σ dies) = ∆σ(~n), and (2) it
is replaced by a new random individual according to the
probabilities P (new individual is from a new species) =
ν and P (new individual is from species σ) = (1 −
ν)Γσ(~n). We compare the birth-death-immigration pro-
cess corresponding to our resource-competition model,
for which Γσ(~n) = gσ(~n)nσ/ntot and ∆σ(~n) = nσ/ntot,
to the neutral birth-death-immigration process, for which
Γσ(~n) = ∆σ(~n) = nσ/ntot. For purposes of comparison,
each new species is chosen randomly from the full sim-
plex of species. (We note that due to the assumption
ntot = S both sets of birth and death probabilities sum
to 1.)

Fig. 4(a) shows a comparison of rank-abundance curves
for our resource-competition model and the neutral
model. The two models produce very similar rank-
abundance curves, and the agreement is essentially per-

fect at high species immigration rate. However, there
are still signatures in the data that the underlying
resource-competition model is not neutral. For exam-
ple, Fig. 4(b) shows color coded histograms of the life-
time of species (as fractions of total simulation time) for
the resource-competition model, revealing the greater av-
erage longevity of species that better match the evenly
divided resource supply. However, even this signature of
underlying competition is lost with increasing immigra-
tion rate.
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FIG. 4. Comparison of resource-competition model to neutral
model. (a) Rank-abundance curves for the resource compe-
tition birth-death-immigration process (red) and the neutral
birth-death-immigration process (blue), for a total popula-
tion of 100 individuals competing for three resources (equally
supplied for our model) and species immigration probabil-
ities ν = 0.001 (solid curves), ν = 0.01 (dashed curves),
and ν = 0.1 (dotted curves). The curves indicate the mean
population size of the largest (rank 1), second largest (rank
2), etc. populations during simulations of 26 · 107, 25 · 107,
and 24 · 107 time steps, respectively. The mean Shannon
entropies of the distributions for the resource-competition
and neutral models, in increasing order of ν, are HRC(N) =
0.33(0.22), 1.6(1.4), 4.04(4.04); H = −

∑
σ pσ log2(pσ), where

pσ is the probability of an individual belonging to species σ.
(b) The triangles show colormaps of the lifetime of species as
fractions of the total simulation time, from top to bottom for
ν = 0.001, 0.01, 0.1.

In the deterministic version of our model, variations in
enzyme budgets or death rates lead to loss of diversity
(see Fig. S3 in Supplemental Material [24]). However,
in the stochastic version of the model defined above, di-
versity can be preserved even if species’ budgets and/or
death rates are unequal. To see this, we allowed for vari-
ability in species’ budgets and death rates by specifying
a species σ by a vector (max(ασ1+ξσ1, 0), . . . ,max(ασp+
ξσp, 0)) and a death rate δ+ξσ, where

∑p
i=1 ασi = E and

the ξσi and ξσ are iid random variables withN (0,Σ2) dis-
tribution. If the standard deviation Σ = 0, we retrieve
our original definition of species. We compared the rank-
abundance curves corresponding to different values of Σ
(Fig. S4), and found that the curves are very similar as
long as Σ < Σ∗, where Σ∗ is a threshold standard devia-
tion which we estimate as Σ∗ ∝ log(S)/S for S � 1 (see
Supplemental Material [24]).

In summary, motivated by a recent study of the role
of trade-offs in phytoplankton diversity [22], we inves-
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tigated a minimal model ecosystem in which the pop-
ulation dynamics of a community is determined solely
by competition for supplied nutrients. We implemented
trade-offs between nutrient-utilization abilities via a sim-
ple sum rule. Depending on the composition of the nu-
trient supply, we observed two distinct behaviors of the
system: either extinctions occur and the number of sur-
viving species does not exceed the number of resources,
as predicted by the competitive exclusion principle [8],
or, surprisingly, no extinctions occur and an unlimited
number of species can coexist, violating this principle.
Importantly, the observed coexistence is robust: (1) If
the populations are perturbed or the mean nutrient sup-
ply changes (within bounds set by the species present),
the system always returns to a state of coexistence. (2)
Within a stochastic version of the model, coexistence
is maintained even if the enzyme budgets and/or death
rates of species are unequal, up to a threshold set by
species’ lifetimes.

There are two essential features of our model that al-
low for coexistence: organisms take part in shaping their
environment, and all species are subject to the same
trade-offs among metabolic abilities. The combined ef-
fect is that nutrient concentrations are robustly driven
to unique values for which all species are equally fit and
hence coexist. Both these essential features of the model
are biologically well motivated. Organisms, particularly
microbes [26], clearly affect their environments. The ex-
istence of trade-offs is widely cited [22, 27], as is their
importance for competition [7] and possible role in di-
versity [22, 28], albeit modeling of the latter has been
limited, e.g. to justifying chaotic population dynamics
[29]. We chose to implement metabolic trade-offs via a
simple sum rule. Other, possibly more realistic choices
and other types of trade-offs should be investigated in
the future.

Remarkably, our simple trade-off model captures a
number of nontrivial features of real ecosystems. First,
the system has multiple steady states depending on the
supply of nutrients [30]. Second, the rank-abundance
patterns (Fig. 4) resemble the ones obtained from nat-
ural ecosystems [25], which are generally taken as sig-
natures of neutral competition [25]. Indeed, within our
model niche and neutral theories of diversity are recon-
ciled, as individuals occupy niches whereas the collective
behaves neutrally. Third, single “keystone” species can
play a crucial role in maintaining a diverse ecosystem,
while other species’ effects on the environment may be
redundant (e.g. species close to each other in the simplex
representation may substitute for each other) [31–33].

Finally, since our minimal model closely describes a
chemostat environment, we note that many chemostat
experiments observe the coexistence of both phenotypi-
cally and genetically diverse microbes [34]. One way to
test whether these microbes rely on each other (e.g. by
jointly maintaining favorable nutrient concentrations, as

in our model), would be to remove species one-by-one,
similar to removal experiments in larger-scale ecosys-
tems.
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