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Quantitative predictions for the spread of mutations in bacterial populations are essential to
interpret evolution experiments and to improve the stability of synthetic gene circuits. We derive
analytical expressions for the suppression factor for beneficial mutations in populations that undergo
periodic dilutions, covering arbitrary population sizes, dilution factors and growth advantages in
a single stochastic model. We find that the suppression factor grows with the dilution factor and
depends non-trivially on the growth advantage, resulting in the preferential elimination of mutations
with certain growth advantages. We confirm our results by extensive numerical simulations.

The fixation of randommutations is the driving force of
evolutionary adaptation. Mutations can also be problem-
atic, e.g., in synthetic biology, where long-term stability
is required to reliably and safely translate more than a
decade of circuit design to in-vivo or industrial settings,
but disabling a synthetic gene network is often benefi-
cial to the cell [1]. Maintaining a bacterial strain over
long times in a lab setting to study its evolution [2, 3] re-
quires enforcing certain population dynamics. To be able
to interpret the results and build quantitative models, it
is therefore essential to understand how these dynamics
themselves alter the impact of beneficial mutations.
We consider the most widely-used protocol, serial pas-
sage [3], which is characterized by phases of exponential
growth alternating with strong reductions in population
size (“bottlenecks”). A constant population size main-
tained, e.g., in a turbidostat [4] or in microfluidic traps
[5] serves as the reference scenario for which theoretical
results are well-known [6–9]. These established results
were recently extended to include populations that vary
in size [10, 11], transmission phases [12] or clonal inter-
ference [13]. While repeated pruning of an exponentially
growing population was considered before [14–17], closed-
form predictions currently only exist for certain limiting
cases and, as we show below, their range of applicability
is even more limited than previously thought. Therefore,
a complete and consistent picture of the fixation process
during serial passage is still lacking. Using two comple-
mentary approaches for a single evolutionary model, we
derive closed-form analytical expressions which provide a
quantitative characterization of mutant fixation for arbi-
trary dilution factors, population sizes and selective ad-
vantages that agrees with direct numerical simulations.
We use a stochastic model of division by binary fission:

X
α(1−µ)
−−−−−→ 2X ; X

αµ
−−→ X + Y ; Y

(1+s)α
−−−−→ 2Y (1)

X and Y represent wild-type and mutant cells, respec-
tively. To obtain analytical results, memoryless reactions
are assumed, resulting in exponentially distributed di-
vision times. However, we will later extend some of
our results to more realistic distributions. In Eq. (1),

α is the wild-type division rate, µ ≤ 1 is the mutation
probability upon division, s ≥ 0 is the growth rate
change of the mutant. For a constant population with
Nc individuals, a random individual is removed after
each division (Moran process). In dynamic populations,
cells divide freely for some time T , then the population
is pruned (“diluted”) to a fixed number of survivors Ns

and the cycle repeats. The latter resembles subculturing
in fresh growth medium in the serial passage protocol.
The survival probability is assumed to be equal for all
cells. On average, the population size before dilution is
fNs, where f = exp(αT ) is the dilution factor. We use
Nc = Ns(f − 1)/ log(f), rounded to the nearest integer,
to achieve approximately the same time-averaged popu-
lation size in both cases (for µ = 0).
Typical trajectories of the model are depicted in Fig. 1a
and b. The fixation time τ is defined as the time until
the population consists of only mutants. We numerically
computed the average fixation times τc and τd for a con-
stant population and the dynamic protocol, respectively
(see Fig. 1c). Figure 1d shows that τd > τc across all
s, meaning that the dynamic population can withstand
the evolutionary pressure of beneficial mutations longer.
Below, we will calculate the fixation probability p of
a single mutation under the influence of the above
population dynamics. If µ is sufficiently small, there
is a direct correspondence between τ and p: Based
on the idea of the slow-scale stochastic simulation
algorithm [19], the mutation rate can be approximated
by αµnX [20], where nX is the time-averaged number
of wild-type cells for µ = 0. Since only a fraction p of
mutations becomes fixed eventually, the average fixation
time is τ = (αµnXp)

−1
, implying τd/τc = pc/pd.

We will first use a diffusion approach to characterize p
for s close to zero and then employ a recently developed
branching process approach for larger s.

Diffusion approximation. This approach was initially
developed by Kimura [9] and is valid for weakly bene-
ficial mutations when the fixation process is dominated
by genetic drift. In contrast to Wahl et al. [14, 15], we
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FIG. 1. Typical trajectories of the model (1) for (a) a dy-
namic population undergoing repeated pruning and (b) a con-
stant population. Parameters: α = 1, Ns = 10, T = log(10),
µ = 10−3, resulting in f = 10, Nc = 39. (c) Fixation times
in constant and dynamic populations from 10000 stochastic
simulations using an accelerated algorithm [18]. (d) Fixation
time ratio. Solid lines in (c) and (d) indicate exact numerical
values from Markov models for a constant population and a
population pruned when reaching a fixed size fNs.

will consider all contributions to stochastic fluctuations,
including cell division, and model random selection upon
dilution with the exact hypergeometric distribution. Let
Mδy(y) and Vδy(y) be the mean and variance, respec-
tively, of the change of the fraction of mutants from the
current generation to the next, given that the current
fraction of mutants is y = nY /(nX + nY ). Then, with
the definition G(y) = exp

(

−2
∫ y

0 Mδy(y
′)/Vδy(y

′) dy′
)

,
the probability of fixation u(y) is given by u(y) =
∫ y

0
G(y′) dy′/

∫ 1

0
G(y′) dy′. Let Λ be the Taylor expan-

sion of Mδy(y)/Vδy(y) near s = 0 up to the order of s
chosen such that Λ is independent of y. Then, the fixa-
tion probability for an initial fraction of mutants y is

u(y) =
1− exp(−2Λy)

1− exp(−2Λ)
. (2)

For dynamic populations, we define y as the fraction
of mutants at the beginning of each cycle. Therefore,
Mδy(y)/Vδy(y) describes the effect of one growth cycle
and subsequent pruning. Mutations occur at any time
during the growth phase, implying that the initial frac-
tion of mutants y for Eq. (2) (i.e., at the beginning of
the cycle following the mutation’s introduction) is a ran-
dom variable. We accommodate this by approximating
pd ≈ ud(ȳd), where ȳd is the average initial fraction of
mutants. Hence, estimating pd amounts to calculating
Λd and ȳd.
To obtain Mδy(y)/Vδy(y) for dynamic populations and
subsequently Λd, we note that, for the growth phase, the
wild-type and mutant subpopulations are described by

simple birth processes which start with (1 − y0)Ns and
y0Ns individuals, respectively. At the end of a cycle,
t = T , the mean and variance for a population starting
with N0 individuals and a division rate λ are:

Mλ(N0) = N0 exp(λT ) (3a)

Vλ(N0) = ξ2N0 exp(λT )[exp(λT )− 1]. (3b)

ξ2 will allow us later to scale the stochastic fluctuations
during growth, but we will initially evaluate only the case
ξ2 = 1, which corresponds to the model (1).
As dilution does not, on average, alter the fraction of mu-
tants, Eq. (3) can be used directly to obtainMδy, whereas
for Vδy , Eq. (3) is combined with the variance of the hy-
pergeometric distribution for the dilution event [20]. A
first-order expansion of Mδy/Vδy around s = 0 then leads
to Λd ≈ 2s(Ns − ξ2)f log(f)/[(f − 1)(1 + ξ2)]. To esti-
mate ȳd, we consider a mutant subpopulation that first
appears at time θ into a cycle and initially consists of ms

individuals. For the model (1) ms = 1, since the second
reaction produces a single mutant cell. By the end of the
initial cycle, the mutant subpopulation will have grown
for a time T −θ to a size larger than ms. As might be in-
tuitive (and can be shown explicitly [20]), the probability

distribution of θ is pmut(θ) = exp(αθ)/
∫ T

0
exp(αθ′) dθ′,

i.e. proportional to the average rate of division events at
a given time θ within a cycle. Using pmut(θ), we obtain
the average sizes of the wild-type and mutant subpop-
ulations for random θ as weighted averages of Eq. (3a)
and estimate the average initial fraction of mutants as

limNs→∞ Nsȳd = ms(f
s−1)

s(f−1) , independent of ξ2 [20].

Substituting ȳd and Λd into Eq. (2), we obtain

pd =
1− exp

(

− 2ms

1+ξ2
(Ns−ξ2)f log(f)(fs−1)

Ns(f−1)2

)

1− exp
(

− 2
1+ξ2

(Ns−ξ2)f log(f)
f−1 s)

) . (4)

Formula (4) can also be used for the constant population
case by replacing Ns → Nc and taking the limit f → 1,
so it reduces to

pc =
1− exp(−2mss/(1 + ξ2))

1− exp(−2Ncs/(1 + ξ2))
. (5)

Note that a more accurate approximation of pc can be
obtained by calculating Λc directly [20]. For ξ2 = 1 and
ms = 1, the theoretical estimates (4), (5) are plotted in
Fig. 2a. As expected, the theory matches the numer-
ical data towards s = 0. The accuracy is remarkable
considering it being a continuous approximation of a dis-
crete process in small populations and the usage of a
large-Ns approximation for ȳd. A Taylor expansion of
τd/τc = pc/pd around s = 0 yields (for large Ns)

τd/τc ≈ 1 + sNs
(f − 1)[1−∆−1(f)]

(1 + ξ2) log(f)
+O(s2) (6)

with ∆(f) = [(f − 1)/ log f ]2/f . For any f > 1, ∆ is
larger than 1, so the slope of τd/τc at s = 0 is positive.
Thus, periodic dilutions do not impact neutral mutations
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FIG. 2. (a) Fixation probabilities from numerical simulations
(symbols) compared to diffusion approximation, Eqs. (5), (4)
(lines). (b) Numerical τd/τc (symbols) and diffusion ap-
proximation (lines). Colored dashed lines: initial slope at
s = 0 according to Eq. (6); gray dashed line: asymptotic ra-
tio ∆, Eq. (7). For all data in (a) and (b) f = 20, ξ2 = 1,
ms = 1. (c), (d) Numerical p and τd/τc (symbols) compared
to branching process approximation, Eqs. (9), (11) (lines).
The y intercept in (d) is also ∆.

as expected, while beneficial mutations are suppressed
by a factor that grows with s in the vicinity of s = 0.
The slope of τd/τc increases with Ns, in agreement with
Fig. 2b.
First taking the limit Ns → ∞ and subsequently consid-
ering small s, we obtain pd ≈ 2ms

1+ξ2∆
−1s and pc ≈

2ms

1+ξ2 s

from Eqs. (4) and (5), respectively, which corresponds
to the only limit for which analytical results were previ-
ously available [15]. The factor by which mutations are
suppressed by serial dilutions in this limit is therefore

lim
s→0

lim
Ns→∞

τd
τc

= ∆(f), (7)

which is shown as a gray dashed line in Fig. 2b. For any
finite population size, there is a smooth transition of
τd/τc towards ∆ with the rate indicated by Eq. (6).

Branching process approximation. As a complemen-
tary approach, we employ the framework developed by
Uecker & Hermisson [21]. Based on an inhomogeneous
branching processes, they derived the following expres-
sion for the fixation probability:

p = 2

[

1 +

∫ ∞

0

(λ+ δ)(t) exp

(

−

∫ t

0

(λ− δ)(t′) dt′
)

dt

]−1

, (8)

where λ(t) and δ(t) are the per capita birth and death
rates, respectively, of the mutant subpopulation in the
“branching limit”. It implicitly assumes that stochastic
fluctuations of the wildtype population size can be ig-

nored and thus we do not expect this approximation to
capture finite population size effects present for small s.
For a constant population, we have the per capita birth
rate λc(t) = (1 + s)α for the mutant subpopulation.
Mutant individuals are replaced by wild-type individu-
als when a wild-type individual is born with rate αnX

and a mutant is chosen for removal with probability
nY

nX+nY +1 ≈ nY

nX

. The per capita death rate is therefore
δc(t) = α. Substitution into Eq. (8) yields

pc =
s

1 + s
. (9)

For the population undergoing serial dilutions, we assume
small time intervals of length σ ≪ T during which cells
die with rate σ−1 log f , reducing the population size from
fNs to Ns exactly in the branching limit. Assuming
the mutation is introduced at time θ into a cycle, these
“windows of death” occur at times ti = iT − θ, i =
1, 2, . . . . Therefore, we have

λd(t) = (1 + s)α (10a)

δd(t) =

{

log f
σ ∃i ∈ 1, 2, . . ., ti < t < ti + σ

0 otherwise
. (10b)

Substituting these rates into Eq. (8) and taking the limit
σ → 0 yields the fixation probability pd(θ) conditioned
on the time of appearance, θ [20]. By averaging over
pmut(θ), we obtain the unconditional fixation probability

pd =
1

f − 1

[

fF

(

f − 1

1− f−s

)

− F

(

f − 1

f1+s − f

)]

, (11)

where F (·) is defined using the hypergeometric function

2F1(a, b; c; z) as F (x) = 2F1(1, 1/(1+s); 1+1/(1+s);−x).
Figures 2c,d show a comparison of this theory with
numerical simulations. As s → 0, pd converges to
0, but τd/τc = pc/pd approaches the finite value ∆,
which is identical to the result derived earlier from the
diffusion approach, Eq. (7), and therefore consistent
with the implicit assumption of large populations. In
contrast, for finite population sizes, only the diffusion
approximation correctly captures the immediate vicin-
ity of s = 0 where τd/τc → 1 (compare Figures 2b and d).

Exponential division time distributions, which have
zero mode, are unrealistic, because cells need time to
mature before the next division. In reality, the division
time distribution has a clear peak with a Fano factor
smaller than 1 [22]. According to Eqs. (6) and (7),
the initial increase of τd/τc should be faster for a less
stochastic division process (i.e. smaller ξ2), while the
plateau value ∆ should not depend on ξ2.
To test these predictions, we consider an extension of
Eq. (1), where the simple memoryless division is replaced
by a process with k stages, which has been characterized
in detail by Kendall [23]: The total division time d
of, e.g., a wild-type cell is distributed according to
2kαd ∼ X 2

2k. After individuals have established an
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FIG. 3. Fixation probabilities and ratios in the multi-stage
model. (a) τd/τc for small s for different k in numerical
simulations (symbols). Lines indicate the slope predicted by

Eq. (6) with ξ2 = 2 log(2)2

k
. (b) τd/τc from numerical simula-

tions for larger s. (c) pc and pd as functions of the dilution
factor f . (d) τd/τc for the data shown in (c) compared to
the analytical approximation, Eq. (7). Parameters: Ns = 50,
f = 20 (a,b) and Ns = 20, s = 0.2 (c,d).

equilibrium distribution across the k different stages,
the population grows like exp(αk(21/k − 1)t), leading
to deterministic growth ∝ 2αt as k → ∞. We use an
adjusted growth rate of α[k(21/k − 1)]−1 in numerical
simulations to maintain an effective population growth
according to exp(αt), resulting in the same average
population size for unchanged cycle lengths T . For
a population of individuals starting in the first stage,
the initial population growth is delayed, reducing the
effective initial size of the mutant subpopulation from
1 to ms = 1/[2k(1 − 2−1/k)]. The variance of the
population size is different from that of a memoryless

division process by a factor of ξ2 ≈
2 log(2)2

k .
Figure 3a shows numerical simulations for different k,
along with the approximation of Eq. (6), substituting
the changed value for ξ2. Note that this neglects the
fact that division events in the mutant subpopulation
are initially correlated. Nevertheless, there is good
quantitative agreement with Eq. (6). Figure 3b shows
that there are some quantitative differences for larger
s, but, according to Fig. 3d, for small s beyond the
initial region of increase for finite population sizes (cf.
Fig. 2b), τd/τc is indeed at most weakly dependent on
k, as predicted by Eq. (7).

In this study, we have developed a complete analytical
characterization of the fixation probability of beneficial
mutations in exponentially growing populations with re-

peated bottlenecks, akin to serial passage. The most in-
triguing result is that the impact of serial passage on the
fixation probability depends non-trivially on the growth
rate change s, a novel effect not seen in the previously
considered large-population, low-s limit, where all fixa-
tion probabilities were found to be proportional to s and
therefore the ratio pc/pd is a constant [15, 17]. Therefore,
the experimental protocol acts as a filter which biases
the distribution of selective advantages of fixed muta-
tions with respect to a constant population or serial pas-
sage with different f . Our results provide quantitative
predictions for three distinct regimes: Firstly, starting
from pc/pd = 1 at s = 0 (no suppression of neutral mu-
tations), the suppression factor increases gradually (and
more quickly for larger Ns) as s increases, which is cap-
tured by the diffusion approach, Eqs. (4), (5), (6). Sec-
ondly, in an intermediate regime, pc/pd reaches a plateau
value ∆, Eq. (7), which only depends on the dilution fac-
tor f . Thirdly, towards large s, the fixation probability
for the serial passage protocol slowly returns to that for a
constant population, as described by the branching pro-
cess approximation, Eq. (11).
To our knowledge, no previous analytical results existed
for the first and third regime. For the plateau, we find
∆ to be monotonic with respect to f (cf. Fig. 3d) and to
approach 1 for f → 1, which is in contrast to the predic-
tion of an optimal dilution factor f from the previously
derived formula ∆′ = f/(log f)2 [15]. However, this ear-
lier result used a binomial distribution for the dilution
process, which is only a good approximation for large f
[20], and indeed, in this regime, ∆′ ≈ ∆. Our prediction
is not only confirmed by full numerical simulations, but
also intuitive as frequent but mild dilutions are exper-
imentally indistinguishable from a constant population.
Furthermore, as can be shown explicitly [20], it is consis-
tent with Ref. [17].
Equation (6) reaches ∆ at a selective advantage δs =
(f−1)(1+ξ2)
fNs log(f) , providing an order-of-magnitude estimate for

regimes of validity of Eq. (6) (s <
∼ δs) vs. Eq. (11)

(s >
∼ δs), which is particularly important for very small

population sizes, when δs is large. For larger popula-
tions, the value of s at which ∆ is attained is negligible
compared to the region in which τd/τc ≈ ∆ (cf. Fig. 2b,
Ns = 100), which indicates equal suppression of muta-
tions conferring arbitrary moderate growth rate changes.
While, in reality, cell division and mutation are far more
complex than described by the model (1), our results es-
tablish a baseline that can be used to gauge the influence
of other effects. We confirmed that they hold qualita-
tively for more realistic division statistics and even quan-
titatively through the proxy parameters ξ2 and ms in the
low-s regime (cf. Fig. 3). Generalizing the branching pro-
cess approximation to take these statistics into account
for larger s presents an interesting direction of future
research. We also found that the exact periodicity of di-
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lutions is not essential, as pruning at a fixed number of
cells fNs leads to almost identical numerical results [20].
Another possible extension is to consider non-exponential
growth, although a previous study found little effect for
the specific case considered there [15].
Our quantitative analytical results provide a framework
for the interpretation of evolution experiments involving
serial passage by predicting how the experimental proto-
col itself can facilitate or suppress the fixation of muta-
tions with certain selective advantages, which is a prereq-
uisite for investigating the relation between population
level adaptation and its molecular basis for other than
neutral mutations [24]. They may also provide guidance
for limiting the impact of undesired mutations in engi-
neered bacteria by adjusting the experimental protocol
or employing synthetic ecologies to shape their inherent
population dynamics.
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