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We calculate the temperature dependent anomalous ac Hall conductance σH(Ω, T ) for a two-
dimensional chiral p-wave superconductor. This quantity determines the polar Kerr effect, as it
was observed in Sr2RuO4 [J. Xia et al., Phys. Rev. Lett. 97, 167002 (2006)]. We concentrate on
a single band model with arbitrary isotropic dispersion relation subjected to rare, weak impurities
treated in the Born approximation. As we explicitly show by detailed computation, previously
omitted contributions to extrinsic part of an anomalous Hall response, physically originating from
diffractive skew scattering on quantum impurity complexes, appear to the leading order in impurity
concentration. By direct comparison with published results from the literature we demonstrate the
relevance of our findings for the interpretation of the Kerr effect measurements in superconductors.

PACS numbers: 72.10.-d, 74.70.Pq, 78.20.Mg

Introduction. Unconventional superconductivity re-
mains a very active field of condensed matter research.
Notably, the chiral p-wave superconductor is a partic-
ularly spectacular state of matter. Not only it demon-
strates the extraordinary effects of electronic correlations,
but it also displays exciting topological features, such
as Majorana zero modes bound to half quantum vor-
tices. In a chiral p-wave superconductor, the electrons
which constitute the Cooper pairs rotate around each
other with magnetic quantum number Lz = ±1. Clearly,
such a state breaks time-reversal symmetry (TRS) and
by Pauli’s exclusion principle, the Cooper pair wave func-
tion ought to be symmetric in spin or band indices of a
given material.

To present date, the chiral p-wave superconducting
phase has not yet been unambiguously observed experi-
mentally in solids. Nonetheless, there is wide consensus
in the community, that strontium ruthenate (Sr2RuO4)
constitutes a promising candidate material.[1–6] Experi-
mental evidence for triplet-pairing in Sr2RuO4 relies on
the Knight shift[7] and neutron scattering[8] while a pe-
culiar phase sensitivity of the Josephson effect [9] is be-
lieved to reveal the odd parity of the order parameter.
Furthermore, the observation of half quantum vortices
in magnetometry[10] indicates spin triplet p-wave super-
conductivity. The spontaneous breaking of TRS was first
observed in the muon spin-relaxation[11] and later in the
polar Kerr effect (PKE).[12] In this paper, we concen-
trate on the latter probe. A nonzero Kerr angle

θK =
4π

Ωd
=
[

σH(Ω)

n(n2 − 1)

]
(1)

in a layered material (such as Sr2RuO4) with interlayer
distance d and complex index of refraction n relies on a
finite, 2D, optical anomalous Hall conductivity σH(Ω) =
[σxy(Ω)− σyx(Ω)]/2, with Ω the ac frequency.

Theories of the anomalous Hall effect[13] (AHE) are
most often developed on the basis of either the semi-
classical Boltzmann equation[14] or the Kubo-Streda[15]

R
R2

1
j^x

j^y(2c,d)

j^x

j^yj
^
y(2a)

j^x

j^yj
^
y(2e-h)

j^x

j^y

R
R2

1

j^y(2b)

FIG. 1: Zero temperature Hall conductivity for a chiral
px ± ipy superconductor with weak impurities and, for con-
creteness, a quadratic dispersion relation (ac frequency Ω, su-
perconducting pairing amplitude ∆0, elastic scattering time
τ and σH(0) = ∓e2/[105π(∆0τ)2~]). The solid red (blue
dashed) curve represents the imaginary (real) part of σH .
Inset: Real space illustration of quantum mechanical prob-
abilities for processes contributing to σH and corresponding
to diagrams (2a)-(2h) from Fig. 2. While generally all of
those diagrams contribute, in the specific case of a parabolic
band, the response stems from the processes (2b)-(2d), only.
These contributions rely on diffractive scattering from quan-
tum impurity complexes (yellow ellipses) with spatial exten-
sion |R1 −R2| comparable to the Fermi wavelength λF .

diagrammatic formalism. While both approaches are
equally justified and should yield the same results,[16] the
semiclassical approach seems to be more intuitive while
diagrams appear to be more systematic. In the Boltz-
mann treatment, the AHE is attributed to the addition
of the following effects. First, the intrinsic or anomalous
velocity contribution, which relies on the Berry curvature
of the bands. Second, the extrinsic contributions, which
stem from (a) asymmetric skew scattering from impu-
rities, and (b) the side jump, a lateral displacement of
semiclassical trajectories near scattering centers. These
contributions are automatically accounted for in the di-
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agrammatic treatment of the problem. Most recently,
the importance of diagrams with two crossed impurity
lines[16] was uncovered. [17, 18] Physically, these dia-
grams represent diffractive skew scattering from quan-
tum impurity complexes.[19] It is important to empha-
size, that for a disorder potential with Gaussian distribu-
tion, diagrams with two crossed impurity lines are of the
same order as diagrams within the noncrossing approxi-
mation.

Theoretically, the ac AHE in the context of chiral p-
wave superconductors has been studied in Refs. [20–25]
for clean single band models. However, σH(Ω) = 0 for
such models,[25, 26] a result that can be understood as
a consequence of Galilean invariance.[27] Therefore, the
observed finite Kerr effect was considered within clean
multiband models[28–32] and single band models with
impurities.[26, 33, 34] Notwithstanding the significant
theoretical interested, to the best of our knowledge the
effect of diffractive skew scattering from quantum impu-
rity complexes has been disregarded in the literature, so
far. It will therefore be the subject of the present paper.
We concentrate on a single band model for a chiral p-wave
superconductor and treat weak impurities perturbatively
and in the Gaussian (i.e. Born) approximation. In this
case, the contribution to the zeroth and first order in
the impurity concentration vanishes. We will show that
diffractive skew scattering, represented by crossed dia-
grams (2b-2d) of Fig. 2, contributes to the same order
as diagrams in the noncrossing approximation, (2a) and
(2e-2o) in Fig. 2.

Model and Assumptions. We employ the following
2D mean-field Bogoliubov-de Gennes Hamiltonian

H0 = ξpτz +
∆0

pF
(pxτx + ζpyτy) (2a)

to describe the single band chiral p-wave superconductor
under consideration. Here, ∆0 is the mean-field super-
conducting amplitude, pF is the Fermi momentum and
ζ = ±1 determines the chirality of the superconductor.
Pauli matrices in Nambu space are denoted by τx,y,z. The
dispersion relation (DR) ξp is assumed to be isotropic
ξp = ξp. While we derive and present all results for
a generic DR, we will additionally discuss our findings
for a parabolic band ξp = p2/2m − EF . We remind the
reader, that Sr2RuO4 is a layered material and that the
conduction mainly takes place in the Ru-O planes. The
model Hamiltonian (2a) should be a good description of
the cylindrical γ-sheet in Sr2RuO4. [2]

In addition to Eq. (2a) our model contains point-like
impurities of strength u0 and density nimp that we treat
in the Born approximation. Then, the disorder potential
V (r), which enters the Hamiltonian as

Hdis = V (r)τz, (2b)
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FIG. 2: Diagrams (2a)-(2o): σH(Ω) to second order in im-
purity concentration for the model defined by Eqs. (2). Di-
agrams (2a) and (2e)-(2h) were presented in Ref. [26]. Dia-
grams (2i)-(2o) are zero. Diagrams (2b)-(2d) are the diffrac-
tive contributions which are the major focus in this work.
Diagram (13): “Mercedes star” diagram[26, 33] occuring for
a model with non-Gaussian disorder.

follows to have a Gaussian white noise distribution

〈V (r)V (r ′)〉 =
δ(r − r ′)

2πν0τ
= nimpu

2
0δ(r − r ′). (2c)

In our notation, ν0 is the density of states (DOS) at the
Fermi level and τ the elastic scattering time, both taken
in the normal phase.

We consider a superconductor in the BCS limit in a
degenerate electron gas with rare impurities. These as-
sumptions correspond to the following hierarchy of en-
ergy scales:

1

τ
� {∆0, T,Ω} �

vF pF
2
≡ EF . (3)

Here, T is the temperature, Ω the ac frequency, vF the
Fermi velocity and we set Boltzmann’s and Planck’s con-
stants as well as the speed of light to unity kB = ~ = c =
1. Our calculations are perturbative in impurity concen-
tration, with the leading contributions being of second
order. Furthermore, we keep only terms up to zeroth or-
der in the small parameter α = [max(∆0, T,Ω)]/EF � 1.
Calculation. Since all diagrams to zeroth and first or-

der in impurity concentration vanish,[26] we concentrate
on second order contributions, see Fig. 2.

We are interested in the response of the p-wave super-
conductor to a vector potential, which slowly varies on
the length scale of the coherence length. Such a slow
vector potential does not enter the momentum depen-
dent order parameter. [21, 26] The physical reason is
that slow electromagnetic fields can not resolve the rel-
ative momentum of the electrons forming the Cooper
pair. Technically, this is a consequence of U(1) gauge in-
variance, keeping in mind that the order parameter field
transforms as a bilinear of two creation operators. The
current vertex is thus (electron charge e = −|e|)

ĵµ = evµ(p)1τ = e
1

2πν0
pµ1τ . (4)
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For a generic DR, the last equation is valid to leading
order in α while it is exact for a parabolic band.

We now outline the calculation of the ac Hall response,
more details can be found in Ref. [35]. We use the Mat-
subara Green’s functions

G(εn,p) = [iεn −H0(p)]−1 = Np(εn)G(εn,p), (5a)

with fermionic frequency and momentum (εn,p) and

Np(εn) = −
[
iεn + ξpτz +

∆0

pF
(pxτx + ζpyτy)

]
, (5b)

G(εn,p) =
1

ε2n + ξ2
p + (p∆0/pF )2

. (5c)

We also need real space expressions for the Green’s func-
tion and for (ξG)(εn, r) = ξ(−i∇) G(εn, r) to order O(α0)

G(εn, r) =
πν0√
ε2n + ∆2

{J0(pF r) +O(α)} , (6a)

(ξG)(εn, r) = −πν0 {F (pF r) +O(α)} . (6b)

In Eq. (6a), J0(pF r) denotes the zeroth Bessel function of
the first kind. The dimensionless function F (pF r) rep-
resents an off-shell contribution and therefore depends
on microscopic details of the model. In the case of a
quadratic dispersion we find F (pF r) = Y0(pF r), where
Y0(pF r) is the zeroth Bessel function of the second kind.
These expressions are valid for length scales r � vF /∆0,
i.e. the regime of length scales which of relevance for
nonvanishing diagrams (2a)-(2h), see e.g. Eq. (13).

The transverse current-current correlator QH(ωl) is
evaluated at finite photon frequency ωl. We first eval-
uate diagrams (2i-2o) of Fig. 2. In view of the antisym-
metrization σH(Ω) = [σxy(Ω) − σyx(Ω)]/2 it is readily
seen that diagrams (2i-2o) identically vanish after angu-
lar momentum integration.

We next concentrate on the other diagrams in the non-
crossing approximation. Diagram (2a) contributes

Q
(2a)
H (ωl) = ζ

e2∆0

ω2
l (2τ)2

βFSk(ωl). (7)

We expanded the density of states near the Fermi sur-
face as ν(ξ) ' ν0 + ν′0ξ and introduced the dimensionless
constant

βFS =
EF ν′0
ν0

(8)

as well as the function

k(ωl) =
∑
n

{
T∆0

2εn + ωl

[√
(εn + ωl)2 + ∆2

0 −
√
ε2n + ∆2

0

]

×

[
1√

(εn + ωl)2 + ∆2
0

− 1√
ε2n + ∆2

0

]2}
. (9)

Similarly, the evaluation of diagrams (2e-2h) yields

Q
(2e−h)
H (ωl) = −Q(2a)

H (ωl)/2. (10)

We now turn our attention to the crossed diagrams
(2b-2d). Their contribution is

Q
(2b−d)
H (ωl) = ζ

e2∆0

(ωlτ)2
βOSh(ωl) (11)

with

h(ωl) = T∆0

∑
n

{[
εn + ωl√

(εn + ωl)2 + ∆2
0

− εn√
ε2n + ∆2

0

]

×

[
1√

(εn + ωl)2 + ∆2
0

− 1√
ε2n + ∆2

0

]2}
. (12)

In Eq. (11) we introduced a nonuniversal constant

βOS = −π
8

{
2

∫ ∞
0

dρ [∂ρJ0(ρ)]3 F (ρ)

+ 3

∫ ∞
0

dρ ∂2
ρJ0(ρ) ∂ρ[J0(ρ)]2 F (ρ)

}
. (13)

The integration variable ρ = pF r denotes the distance
between the two impurities of diagrams (2b)-(2d). For
the general dispersion relation we expect βOS ∼ 1, while
for the specific case of a parabolic band we find βOS =
1/8. Also, note that the integral (13) is determined by
lengthscales r ∼ p−1

F , i.e. by length scales much smaller
then the coherence length.

We conclude this section with a comment on the role of
the particle-hole (PH) transformation, i.e. of interchang-
ing electronic creation and annihilation operators. As
explained in Ref. [26], for our model this transformation
is equivalent to mapping ξp → −ξp and ζ → −ζ. It was
also shown there, that PH symmetry in the normal phase,
i.e. ξp = −ξp , combined with the fact σxy ∝ ζ which fol-
lows from the time reversal operation, implies σxy ≡ 0
for our model with Gaussian disorder. Furthermore,
a generic DR, treated in the linearized approximation,
ξp ' vF (p− pF ), is PH symmetric upon a redefintion of
momenta. By consequence, since the contributions pre-
sented in Eqs. (7) and (10) stem from the Fermi surface,
they will vanish whenever ν(ξ) = ν(−ξ). Similarly, if the
system has PH invariance, (ξG)(ε, r) = −(ξG)(ε, r) = 0

and thus βOS and Q
(2b−d)
H , Eqs. (13) and (11), will be

zero in accordance with the general arguments exposed
in this section.

Results. Evaluating Matsubara sums in expressions
for h(ωl) and k(ωl) followed by an analytical continuation
iωl → Ω+ = Ω + i0 one finds

k(ωl) → iK(Ω+/∆0) (14a)

h(ωl) → iH(Ω+/∆0) (14b)

with dimensionless functions
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K(z) = 12z

∫ ∞
1

dx

2π
tanh

(
∆0x

2T

)
1√

x2 − 1 [4x2 − z2]
− i1

2
tanh

(
∆0

2T

)[√
z

z − 2
+

√
z

z + 2

]
+ 2

∫ ∞
1

dx

2π
tanh

(
x∆0

2T

)√
x2 − 1

[
1

(2x+ z)[1− (x+ z)2]
− 1

(2x− z)[1− (x− z)2]

]
, (14c)

H(z) =

∫ ∞
1

dx
tanh

(
x∆0

2T

)
π
√
x2 − 1

[
3x+ 2z

1− (x+ z)2
− 3x− 2z

1− (x− z)2

]
−

tanh
(

∆0

2T

)
2

[
z − 3√
2z − z2

+
z + 3√
−2z − z2

]
. (14d)

In this notation, the contribution of noncrossing dia-
grams (2a), (2e-2h) to the Hall response is

σ
(2a,e−h)
H = ζ

e2

~
βFS

8

∆0

Ω3τ2
K(Ω+/∆0). (15a)

The contribution of crossed diagrams (2b-2c) to the Hall
response, i.e. the major result of this work, is

σ
(2b−d)
H = ζ

e2

~
βOS

∆0

Ω3τ2
H(Ω+/∆0). (15b)

The total Hall response is the sum of Eqs. (15a) and
(15b). While above two contributions have very differ-
ent functional dependence on temperature and on the ac
frequency their asymptotic behavior is close. Indeed, for
T = 0 the limiting cases of functions H(z) and K(z) with
z = Ω/∆0 + i0 are

K(z) =

{
z3

15π Ω� ∆0,

−i− 6 ln(z)
πz Ω� ∆0,

(16a)

H(z) =

{
8z3

105π Ω� ∆0,

−i− 4 ln(z)
πz Ω� ∆0.

(16b)

Discussion. First, we would like to dwell on the
physical meaning of the diagrammatic calculation. In
the inset of Fig. 1, the quantum mechanical probability
for connecting source and drain, p =

∑
i,j AiA

∗
j , is de-

picted. Amplitudes Ai (their complex conjugate A∗i ) are
represented in red (blue). Also notice the “anomalous”
propagation with two opposite arrows on a single line.
It represents reflection off the condensate and, as a con-
sequence of averaging over the Fermi surface, occurs in
the vicinity of the current vertex.[36] The proportionality
σH ∝ ζ immediately follows.

Concerning the diffractive, crossed diagrams,
Eq. (15b), recall that those involve a prefactor βOS

which is determined by the function F (pF r) and thus
stems from virtual (off-shell) processes. As a conse-
quence, by means of Heisenberg’s incertainty principle,

σ
(2b−d)
H is determined by impurities residing about

one Fermi wavelength λF from each other, i.e. from
impurity complexes represented by yellow areas in Fig. 1.
Interestingly, those impurity complexes act similarly
to strong impurities. Indeed, diagrams (2b-2d) have

the same functional form, Eq. (15b), as the “Mercedes
star” diagram[26, 33] (13) in Fig. 2, which involves the
third moment in the distribution of V (r). However, in
contrast to diagram (13), we repeat that F (pF r) and

thus σ
(2b−d)
H vanish for a strictly PH symmetric model,

in accordance with general arguments[26] reviewed
above. On the basis of these considerations, the relative
importance of the diffractive contribution, Eq. (15b), as
compared to the previously known result, Eq. (15a), is
apparent:

σ
(2b−d)
H /σ

(2a,e−h)
H ∼ βOS/βFS. (17)

In a model for which the DOS is nearly constant βFS �
1 and consequently the diffractive contribution can be
parametrically enhanced as compared to other impurity-
induced processes computed within ladder approxima-
tion. In particular, in the case of a parabolic band,
the Hall response is finite, see Fig. 1, as compared to
the vanishing result that one obtains from noncrossing
diagrams.[26]
Summary. The microscopic origin and quantitative

understanding of the Kerr effect in TRS-broken state of
unconventional superconductors remains as a topic of on-
going debate and active research. Existing calculations
in various models and initial assumptions yield very dif-
ferent results concerning the functional dependence of
anomalous ac Hall conductance on essential parameters
such as frequency, electronic mean free path, and tem-
perature. In particular, in the experimentally relevant
frequency range, Ω � ∆0, two-band model calculations
in the clean limit result in the quadratic decay of σH
with inverse frequency σH ∝ 1/Ω2. [30] In contrast, im-
purity based calculations performed either in the model
of non-Gaussian disorder or without particle-hole sym-
metry predict σH ∝ 1/Ω3 scaling from skew-scattering,
see Eq. (15) and Refs. [26, 33]. However, each of these two
extrinsic mechanisms implies different dependence on im-
purity concentration as nimp and n2

imp respectively. The
most recent full T -matrix analysis [34] uncovered that
skew scattering of low-energy quasiparticle on strong im-
purities results in anomalous Hall response being linearly
proportional to τ ∝ n−1

imp and falling off linearly with in-
verse frequency. The kinetic approach of Ref. [34] is
however limited to low frequencies, Ω < ∆0. Further-
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more, since quasiparticle density decreases exponentially
fast with temperature, this mechanisms dominates Kerr
rotation only in the immediate vicinity of the critical tem-
perature Tc − T � Tc.

Apart from its purpose in the context of p-wave super-
conductors, our work can be seen as a proof of principle
for the importance of diffractive skew scattering (crossed
diagrams) beyond the context of the dc AHE. In par-
ticular, our study of the ac AHE evokes a similar in-
vestigation for time reversal symmetry breaking super-
conductors with other unconventional order parameter
symmetries. This is also motivated by recent Kerr mea-
surements in high-Tc cuprates YBa2Cu3O6+x [37] and
La1.875Ba0.125CuO4, [38] and heavy fermion supercon-
ductors UPt3 [39] and URu2Si2 [40], that already trig-
gered new theories. [41] We will devote a separate pub-
lication to this topic. More generally, it can be expected
that diffractive skew scattering plays a substantial role
for a plethora of other anomalous physical observables
(e.g. the spin Hall effect [42]) and thus constitutes a
focus for future research.
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