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We analyze the dynamics of electrons in corrugated layers of transition metal dichalcogenides.
The intrinsic (Gaussian) curvature along with the strong spin-orbit interaction leads to an emergent
gauge field associated with the Berry connection of the spinor wave function. We study in detail the
effect of topological defects of the lattice, namely tetragonal/octogonal disclinations and edge dislo-
cations. Ripples and topological disorder induce the same dephasing effects as a random magnetic
field, suppressing the weak localization effects. This geometric magnetic field can be detected in a
Aharonov-Bohm interferometry experiment by measuring the local density of states in the vicinity
of corrugations.

Introduction. Graphene and other two-dimensional
crystals have served as new platforms for the controlled
interplay between mechanical and electronic properties
in material science.1 Mechanical distortions are usu-
ally incorporated as a background geometry in the ef-
fective theory describing the long-wavelength dynam-
ics of electrons.2 In the particular case of graphene,
gauge-like fields emerge due to the effect of mechani-
cal tensions,3 corrugations,4 or topological defects5 on
the lattice. These fields arise as a manifestation of
the chirality of the Bloch wave functions around the
two inequivalent corners of the hexagonal Brillouin zone,
K±. Single-layers of transition metal dichalcogenides6

(TMDCs) combine these features with the strong spin-
orbit coupling provided by the transition metal atoms.
The latter removes the spin degeneracy of the bands due
to the lack of a center of inversion in the unit cell, while
preserving the spin quantum number along the out-of-
plane direction because of its mirror symmetry.7 This
observation has been exploited in different proposals for
spintronics and optoelectronics applications.8 In partic-
ular, the application of tensions with trigonal symmetry
leads to the formation of pseudo-Landau levels and the
possibility of a quantum spin Hall effect,9 similarly to the
original proposal in bulk zinc-blende semiconductors.10

Accumulation of Berry phases11 in real space yields an
additional source of gauge fields. For instance, in corru-
gated graphene, where the spin-orbit interaction is neg-
ligible, these Berry phase effects are induced by the mo-
tion of the atomic orbital basis along with the distorted
lattice.12 This contribution, however, is purely dynami-
cal and parametrically small at low frequencies in com-
parison to the aforementioned pseudo-gauge fields. In
the case of TMDCs the situation may reverse: first of
all, the chirality is not longer a good quantum number,
so its effects are strongly attenuated for carriers close
to the band edges due to the sizable gap in the band
structure; second and more importantly, in the presence
of corrugations the large spin-orbit coupling rotates the
wave function in the spinor basis, which may engender
a gauge field. We demonstrate that this is the case in
this Letter: starting from a minimal Hamiltonian for the
hexagonal (2H phase) crystal that incorporates the ef-

FIG. 1: Corrugated TMDC crystal in the 2H phase described
as a membrane in the Monge’s representation. Red arrows
represent normal vectors to the surface. The unit cell consists
of one transition metal and two chalcogen atoms. The dashed
line represents the plane of mirror reflection. The lowest en-
ergy bands are dominated by d orbitals from the transition
metal atoms. The local orbital basis (in the figure, a dz2 or-
bital dominating the conduction band) is oriented along the
normals.

fect of curvature in the dynamics of low-energy excita-
tions, we derive the emergence of a U(1) gauge field re-
lated to the spin-Berry connection of the wave function.
The associated magnetic field is intrinsically determined
by the geometry of the distorted lattice. Experimental
consequences are discussed with emphasis on topologi-
cal defects, which have been observed by transmission
electron microscopy.13 Our theory falls within a broader
framework of interplay between topology and orienta-
tional (spin or nematic) order, with examples in nano-
magnetism,14 liquid crystals,15 or more recently in Weyl
semimetals.16

Model. We are interested in the effective low-energy
description of electrons in a corrugated TMDC with ac-
count of spin-orbit interactions. The k · p Hamiltonian
around the two inequivalent valleys reads7,17

H =
~2k2

2m∗
±∆so s · n(r), (1)

where k = −i∂ is the momentum operator around the
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K± points and m∗ is the effective mass of carriers near
the edges of the lowest energy bands. The last term ac-
counts for the spin-orbit coupling, where s is the vector
of Pauli matrices associated with the spin degree of free-
dom, the ± sign applies to K± valleys, and n (r) repre-
sents the normal to the crystal surface. Here r = (x, y)
are the positions of the unit cells in the crystalline config-
uration, which parametrizes the surface in the so-called
Monge’s representation, see Fig. 1.

The Hamiltonian in Eq. (1) is expressed in an inter-
nal frame of reference, in which the local orbital ba-
sis is rotated with respect to an inertial (laboratory)
frame, as depicted in Fig. 1. In the pristine crystalline
phase, n (r) ≡ êz, the Hamiltonian is compatible with
the D3h = D3 × σh point group symmetry of the lattice.
Real samples may however present corrugations due to
either the interaction with a substrate or thermal fluctu-
ations, breaking the σh (mirror z → −z) symmetry. As
bands of opposite parity with respect to mirror reflection
are well separated in energy, orbital hybridization can be
safely neglected.18 The mirror-symmetry breaking is then
incorporated by locking the quantization axis to the nor-
mal, as imposed by the spin-orbit interaction. A similar
approach has been taken in carbon nanotubes.19 In this
Letter we focus on the static case, so that n (r) depends
only on spatial coordinates.

Adiabatic limit. It is convenient to study the model in
the spinor basis adjusted to the local quantization axis
defined by n (r). For this purpose, let us consider a local
unitary rotation satisfying20

U†(r)[s · n(r)]U(r) = sz. (2)

The unitary operator U (r) implements a SU(2)/U(1)-
gauge transformation on the spinor wave function. The
transformed Hamiltonian is

U†(r)HU(r) =
~2

2m∗
[
k − Â(r)

]2 ±∆sosz, (3)

where the components of the gauge field read

Âµ(r) ≡ iU†(r)∂µ U(r) = Âaff
µ (r) +AB

µ (r) sz. (4)

We emphasize that Âµ(r) splits into two different contri-

butions: Âaff
µ (r) is univocally determined by the extrinsic

curvature of the surface,21 and therefore does not depend
on the particular choice of U (r); on the contrary, AB

µ (r)
does depend explicitly on this choice, which manifests
the U(1) ambiguity of the theory.22

The gauge-independent (transverse) contribution
comes from the affine connection defined by the corru-
gated surface. It accounts for the deviation of the spin
polarization vector with respect to n. This field can be
recast in terms of the extrinsic curvature tensor (second
fundamental form) as18

Aaff
µ (r) =

i

4
fµν (r) [sz, sν ] ≈ i

4
∂µ∂νh (r) [sz, sν ]. (5)

(b)(a)

FIG. 2: (a) Tetragonal disclination in the Volterra’s construc-
tion: a sector of the lattice with central angle α = 2π

3
is re-

moved and then the boundaries are identified. (b) Top view
of the resulting cone-like shape. The red arrows represent
the normal to the surface, and the black ones point along the
vortex field, AB

φ = − α
4π|r| .

The last expression comes from an expansion to the low-
est order in the displacement fields in the Monge’s rep-
resentation.

This deviation induces spin flip processes through a
coupling of the form Aaff(r) · k. Due to the large spin-
orbit splitting, however, spin relaxation can be neglected
in the limit of smooth corrugations defined by

∇2h� ∆so

~vF
, (6)

where vF is the Fermi velocity of carriers. In this regime,
the spin follows adiabatically the local quantization axis
imposed by the spin-orbit interaction. The wave function
acquires a phase while moving over a curved section of
the distorted crystal, which is associated with the spin-
Berry connection provided by the remaining U(1)-gauge
contribution in Eq. (4). As a result, an effective magnetic
field arises in the dynamics of carriers with respect to the
co-moving internal frame,18

B(r) = ±~
e
∇×AB(r) = ± ~

2|e|
κ(r). (7)

Here κ(r) is the Gaussian curvature and the sign +(−)
corresponds to spin up (down) electrons with respect to
the local quantization axis. Notice that this is an intrinsic
geometrical property of the distorted crystal.

Topological defects. The magnetic flux across the sur-
face of the distorted crystal is quantized according to the
Gauss-Bonnet theorem,18

Φ =

∫
S

B(r) dA =
~

2|e|

∫
S

κ(r) dA = χ(S)Φ0. (8)

Here χ(S) is the Euler characteristic of the corrugated
surface, Φ0 = h/2|e| is the flux quantum, and we have
neglected contributions from the boundary. Any configu-
ration smoothly connected to the flat phase has zero Eu-
ler characteristic and thus the total flux is zero. Topolog-
ical defects –disclinations and dislocations– are therefore
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(a) (b)

FIG. 3: (a) Magnetic field profile due to a gaussian bump,

described by a heigh t profile of the form h (r) = h0e
−|r|2/R2

.
(b) Map of the local density of states at the Fermi level in arbi-
trary units. The model parameters are h0/R = 0.1, kFR = 5,
m∗U0/2π~2 = 1. The red dots represent the positions of the
scattering centers.

a natural source of curvature. Isolated disclinations can
be introduced into the crystal lattice via the Volterra’s
(cut-and-paste) construction: as depicted in Fig. 2 (a),
these defects can be built by removing (adding) a sector
of the lattice with central angle α –also referred to as the
defect (excess) angle– and then by identifying its bound-
aries. This leads to a cone-like shape, see Fig. 2 (b),
whose Gaussian curvature is zero everywhere except at
the cusp, κ(r) = α δ(2)(r).18 Hence, we identify α with
the topological charge of the defect.

In TMDC crystals, defects preserving the coordination
of the lattice are the tetragonal (α4 = 2π

3 ) and octogo-

nal (α8 = − 2π
3 ) disclinations. The competition between

stretching and bending energies relaxes the position of
the atoms. The involved strain fields are long-ranged,
similarly to the case of a screw dislocation in a 3D solid.23

The long-ranged nature of the defect is also present in the
Berry-connection gauge field, which possesses the struc-
ture of a vortex, see Fig. 2 (b). The topological charge of
the disclination can be understood on physical grounds
as twice the Aharonov-Bohm phase acquired by the wave
function when the electron surrounds the defect, a rem-
iniscence of the removed angular sector in the Volterra’s
construction. With account of Eq. (8) the total spin-
Berry magnetic flux reads

Φ =
1

6
(n4 − n8)ΦDirac

0 , (9)

where ΦDirac
0 = h/|e| is the Dirac monopole flux quan-

tum and n4 (n8) is the number of tetragonal (octogo-
nal) disclinations. In asymptotically flat samples we have
n4 = n8, and therefore the total flux is zero. A pair of
complementary disclinations forms an edge dislocation
with the Burgers vector perpendicular to the axes link-
ing the centers of the pair. On the contrary, an imbalance
in the topological charge bends the TMDC layer, even-

tually folding the membrane into a closed molecule. This
happens when the condition n4−n8 = 6 is met according
to Euler’s formula.18 Through Eq. (9) we conclude that
the topological closure is equivalent to the Dirac quanti-
zation condition, i. e. electrons experience the magnetic
field created by a Dirac monopole located at the center
of the molecule.

Aharonov-Bohm effect. Electrons and holes surround-
ing corrugated regions of the sample acquire a non-trivial
phase that gives rise to quantum interference corrections
to spectral properties. We propose a scanning tunnel
microscopy (STM) experiment to probe the Aharonov-
Bohm effect24 on the local density of states induced
by the proximity of a corrugation. Our scheme follows
closely previous proposals to measure the same effect due
to real25 and pseudo-magnetic fields in graphene.26 The
simplest Aharonov-Bohm interferometer consists of two
scattering centers. Processes corresponding to semiclas-
sical closed paths between the scattering centers and the
STM tip give rise to a correction in the local density of
states due to the presence of curvature, δρ = ρ − ρflat,
which is evaluated as

δρ (r, ω) ∼ − 1

π
Im δGloop (r, r, ω)×

[
cos

πΦloop

Φ0
− 1

]
.

Here δGloop (r, r, ω) represents the correction to the lo-
cal Green function due to these scattering loops, which
can be computed by means of standard diagrammatic
techniques.18 In the derivation of this expression we em-
ployed the semiclassical approximation for the Green
function, which is justified in the adiabatic regime,
Eq. (6). The cosine factor stems from the fact that trajec-
tories enclosing anti-clockwisely the corrugation acquire
a phase proportional to the magnetic flux across the en-
closed area, Φloop, whereas this phase has the opposite
sign for clockwise trajectories.

We consider the case of a gaussian bump. Fig. 3 (a)
shows the profile of the emergent magnetic field provided
by Eq. (7). The correction to the local density of states
is shown in Fig. 3 (b). The red dots represent the posi-
tions of the scattering centers. In the calculation we have
assumed a scattering potential of the form U0 δ (r − ri)
and we have neglected inter-valley scattering, which is
justified close to the bottom of the band.27 Notice that
the effect is not sensitive to the sign of the flux, so con-
tributions from carriers with opposite spin sum up.

Magneto-transport. The apparent time-reversal sym-
metry breaking induced by corrugations and topo-
logical disorder suppresses the longitudinal magneto-
conductance, ∆σxx (B) ≡ σxx (B)− σxx (0), in the same
manner as the scattering off magnetic impurities. Re-
lated mechanisms have been previously discussed in the
context of multi-valley metals.28 The low-field magneto-
conductance arises due to the partial suppression of
the weak (anti-)localization correction to the conductiv-
ity. The later results from the quantum interference
on self-intersecting time-reversed diffusive trajectories,
along which the phase coherence of the wave function
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FIG. 4: Magneto-conductance of single-layer TMDCs at T = 1.5 K (blue), T = 3 K (black) and T = 4 K (orange) calculated

via Eq (10) for the 3 regimes discussed in the text. In all cases we have considered lϕ[nm] = 50/
√

2.5× T [K] in agreement
with magneto-transport experiments in multi-layers.30

is preserved, lϕ � `. Here ` represents the mean free
path, characterizing the typical size of diffusive loops,
and lϕ is the phase coherence length limited by inelastic
scattering off phonons or due to electron-electron inter-
actions. The fictitious time-reversal symmetry breaking
caused by the Gaussian curvature of the sample is only
effective when the spin is conserved, ls � `. Here ls
represents the spin diffusion length accounting for both
inter- and intra-valley spin relaxation mechanisms. The
random magnetic fields associated with the curvature of
the sample define another length scale, the dephasing
length l?. This irreversible dephasing mechanism opens
relaxation gaps in the spin/valley mixing triplet chan-
nels of the Cooperon correlation function, leading to the
magneto-conductance formula18,29

∆σxx (B) =
e2

πh

[
4F

(
B

Bϕ +Bs +B?

)
+F

(
B

Bϕ + 2Bs

)
− F

(
B

Bϕ

)]
, (10)

where F (x) ≡ ln (x) + ψ
(

1
2 + 1

x

)
, ψ (x) is the digamma

function, and Bα ≡ ~/4el2α.
Fig. 4 shows the magneto-conductance deduced from

Eq. (10) for the 3 possible regimes: (a) lϕ � ls, l?; the
spin quantum number and phase coherence of the wave
function are preserved along the diffusive loops responsi-
ble for the weak localization. (b) ls � lϕ, l?; the apparent
time-reversal symmetry breaking is ineffective due to spin
relaxation, which engenders a phase difference ∆ϕ ∼ π
between time-reversed trajectories and therefore a de-
structive interference, leading to weak anti-localization
and negative magneto-conductance at low fields. (c)
l? � ls, lϕ; the electrons accumulate random phases
within phase coherent trajectories due to the presence
of curvature, suppressing the weak (anti-)localization as
time-reversal symmetry for spin up/down electrons is ef-
fectively broken. In the case of MoS2, multi-layer sam-
ples show the usual weak localization behavior30 charac-
teristic of regime (a), whereas the magneto-conductance
of the single-layer is 1-2 orders of magnitude lower,31,32

compatible with regime (c). Interestingly, the negative
magneto-conductance in single-layer MoS2 reported in

Ref. 32 is reproduced if we take the same inelastic coher-
ence and spin diffusion lengths as in the multi-layer, see
panel Fig. 4 (c).

Discussion. TMDC samples show similar corrugations
as in graphene, with average heights of the order of
h0 ∼ 1 nm and lateral sizes R ∼ 2 − 20 nm.33 The
effective magnetic field at the center of these ripples is in

the ballpark of B ∼ Φ0

(
h0

R2

)2 ∼ 0.1 − 1 T. Even larger
fields are within experimental reach by applying compres-
sion. The large spin-orbit splittings –tens of meV in the
conduction band and hundreds in the valence band– en-
sure the adiabatic condition for carriers close to the band
edges. Interestingly, the modulation of the Fermi level
leads to a crossover from the adiabatic regime, in which
the gauge field stems from Berry phases in real space,
to a regime dominated by pseudo-gauge fields caused by
strain. This crossover should be detected in the pro-
posed STM experiment as a variation in the interference
pattern on account of the lower symmetry of the strain-
induced pseudo-magnetic field, reminiscence of the struc-
ture of the wave function in reciprocal space.

We have focused on the geometric (static) aspects of
the gauge theory in this Letter. Spin-dependent electro-
motive forces generated by dynamical membranes will
be object of future research. For example, the dynam-
ics of topological defects should pump spin analogously
to the motion of solitons in magnets.34 Reciprocally, spin
currents will generate a back-action in the membrane dy-
namics, leading to melting instabilities due to the prolif-
eration of topological defects. Finally, an imbalance in
the number of disclinations with opposite charge will give
rise to a spin-Hall response.35

In summary, we have shown the emergence of a gauge
field associated with the spin-Berry connection in cor-
rugated TMDC crystals. The phases accumulated by
electrons and holes moving along curved sections of the
crystal give rise to corrections in their single- and two-
particle properties due to quantum interference. The for-
mer can be detected as a variation in the local density
of states in the vicinity of corrugations and topological
defects, whereas the latter may explain the suppressed
localization effects observed in magneto-transport exper-
iments in single-layer MoS2,31,32 in contrast to the con-
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ventional weak localization behavior in the multi-layer
counterpart.30 This analysis could be extended to other
systems such as zinc-blende semiconductors and surface
states of topological insulators.
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