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Starting with thermodynamic predictions and following with molecular dynamics (MD) sim-

ulations, special triaxial compression-tension states were found for which the stresses for the

instability of the crystal lattice of silicon (Si) are the same for direct and reverse phase trans-

formations (PTs) between semiconducting Si I and metallic Si II phases. This leads to unique

homogeneous and hysteresis-free first-order PTs, for which each intermediate crystal lattice

along the transformation path is in indifferent thermodynamic equilibrium and can be ar-

rested and studied by fixing the strain in one direction. By approaching these stress states,

a traditional two-phase system continuously transforms to homogenous intermediate phases.

Zero hysteresis and homogeneous transformations are the optimal property for various PT ap-

plications, which drastically reduce damage and energy dissipation.

First-order displacive stress-induced PTs under normal and high pressure are of great fun-

damental and applied interest for the synthesis and application of new phases and materials

[2, 3, 4, 5, 1, 6, 7]. PTs start when the crystal lattice of a parent phase loses its stability [1, 8].

Stresses for direct and reverse PTs are located on different sides of the phase equilibrium stress

(see [8] and Fig. 1), and their difference represents stress hysteresis, which can be quite large.

Any intermediate homogeneous state of the crystal lattice along the transformation path is

unstable under prescribed stresses. If strain is prescribed or fixed during transformation in

an attempt to stabilize intermediate state, the material transforms into heterogeneous two-

phase system (similar to Fig. 2A) with interfaces between the phases (nucleation), and further

growth of the product phase occurs via interface motion. In real materials, defects produce

stress concentrations and instabilities start locally near defects at smaller deviation from the
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equilibrium stresses. Due to lattice mismatch, interfaces generate significant elastic stresses,

that propagate together with interfaces through the entire sample during cyclic direct-reverse

PTs and cause damage while passing through material defects. Stress hysteresis for growth

is determined by interfacial friction and energy [9, 2]. On the applied side, stress hysteresis

and the corresponding energy dissipation, as well as interfacial stresses should be reduced for

many PT-related applications, like for shape memory alloys for actuation or medical applica-

tions [2, 3, 4] or caloric materials [4, 5]. On the fundamental side, it is of interest to stabilize

intermediate structures along the transformation path and study their properties [10], with

the expectation that they may be unique. Also, significant reduction of the PT pressure by

applying nonhydrostatic stresses is of basic and applied interests [1, 6, 7], but it is still not

connected to lattice instabilities.

Let us consider as an example a cubic crystal lattice under action of three stresses normal

to cubic faces, σi, and for compactness assume σ1 = σ2 6= σ3. Let lattice instability lines in the

plane σ1 − σ3 have different slopes for direct and reverse first-order PTs, see the example for

Si I↔Si II PTs in Fig. 1. Instability lines correspond to the disappearance of the respective

minimum of the Gibbs energy G (Fig. 1), where the order parameter is related to the trans-

formation strain that transforms the crystal lattice of the parent phase to that of the product

phase [8, 11, 12]. Since instability lines have different slopes, they should have a common

point. They cannot intersect, i.e., be continued beyond the common point, because this would

mean that the low stress (pressure) phase transforms to the high pressure phase at a stress

reduction, which is contradictory. We exclude the cases where the common point represents

transition from the first- to second-order PT or critical point, beyond which phases are not

distinguishable. Then the lattice instability lines should merge for some range of stresses (Fig.

1). The phase equilibrium line (corresponding to the equality of the Gibbs energy of phases

(Fig. 1)) is between instability lines, and consequently, it should also coincide with the merged

lines. Stress hysteresis, which is defined as the difference in values of σ3 between instability

stresses for direct and reverse PTs for the same σ1, decreases to zero when σ1 tends toward the

merged region. Within the merged region, the energy barrier between phases disappears and

Gibbs energy possess a flat portion (Fig. 1) with constant energy between strains correspond-

ing to each of the phases. Consequently, each intermediate phase along the transformation



3

Figure 1: Relationships between stresses σ3 and σ1 = σ2 for crystal lattice instabil-
ity for direct and reverse Si I↔Si II PTs and the existence of the continuum of
homogenous intermediate phases. Each instability line is related to the disappearance of
the minimum in the Gibbs energy G plot for the corresponding phase. The dashed line is the
tentative phase equilibrium line corresponding to equality of the Gibbs energy G of phases. For
stress states at the merge of two instability lines, Gibbs energy has a plateau with constant
value leading to an unique homogeneous and hysteresis-free first-order Si I↔Si II PT, with
a continuum of intermediate homogeneous phases (HP), which are in indifferent thermody-
namic equilibrium. With a further increase in σ1, the first-order transformation changes to the
second-order transition (designated as 2nd) and then (not shown) to a disordered phase.
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path has the same Gibbs energy as both phases and is by definition in a neutral or indiffer-

ent (i.e., intermediate between stable and unstable) thermodynamic equilibrium state. This

should lead to unique homogeneous and hysteresis-free first-order PTs. Each of the states can

be considered as a separate intermediate phase since it has distinct lattice parameters and the

transformation between any of these states is accompanied by a change in strain and latent

heat. Thus, there is an infinite number (continuum) of intermediate phases with homogeneous

(without interfaces) transformations between them. These intermediate homogeneous phases

and the entire transformation process can be arrested and studied by fixing strain in one di-

rection; they may possess exceptional properties. When starting with a two-phase structure,

stresses change toward the merged region, the energy barrier between phases at equilibrium,

A→ 0. In continuum Ginzburg-Landau-type theory [8, 11, 12], the interface energy is ∼
√
A,

and the width is ∼ 1/
√
A. Thus, when approaching the merged region, the interface energy

tends to zero but width diverges. This means the two-phase structure should continuously

transform to a homogenous intermediate phase. Before reaching homogeneous states, unique

heterogeneous intermediate structures with very broad interfaces with controllable width can

also be stabilized at a prescribed strain. These structures may possess unexpected properties.

Due to homogeneous transformation and lack of interfaces, internal stresses are absent and

damage will be minimal as well, despite the possibility of large transformation strains. Zero

hysteresis results in zero energy dissipation. Both these properties are of great fundamental

interest and applied importance for various PT-related applications [2, 3, 4, 5]. These phe-

nomena should occur for any known or specially designed material for which stresses for the

instability of crystal lattice can be made the same for direct and reverse PTs.

The above hypothetical scenario is purely thermodynamic and is not related to any specific

atomic structure. The goal of the current letter is to find a proof of concept for the above

described behavior. This can be done using phase field or atomistic simulations. For a small

sample consisting of a dozen lattice cells under strain-controlled condition, transformation

is always homogeneous even when there is a barrier between phases [13, 14, 15]. This is a

well-known size effect, which does not allow heterogeneous microstructure in a small sample

because of interfacial and elastic energy. Thus, a sample should have large enough size and

size-independence of the observed phenomena should be proven. First principle simulations
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are prohibitively expensive for such simulations, so we chose MD. In principle, any interatomic

potential would be sufficient for the proof of concept, even Lennard-Jones. To make it more

realistic, we consider here Si I↔Si II PTs using Tersoff potential (see supplemental material

[21]).

MD simulations at 1 K were utilized to study PTs Si I↔Si II under various combinations of

compressive true (Cauchy) stress (i.e., force per unit deformed area) σ3 and two normal stresses

σ1 = σ2, all along cubic axes (Fig. 1); positive stresses are tensile. Lattice instability and

initiation of PT correspond to stresses at which the initial crystal lattice cannot be stabilized.

It is found that in the σ3−σ1 plane initiation of both direct and reverse PTs occurs at straight

lines (Fig. 1), described by equations σd
3 = −11.8286 + 0.6240σ1 and σr

3 = −9.3888 + 0.3840σ1.

Because instability lines possess different slopes, they should intersect at the point σ1 = 10.1658

and σ3 = −5.4851. Instead, the instability line for the Si I→Si II PT bends and merges with

the line for the Si II→Si II PT within a broad stress range, in agreement with our predictions.

When stresses σ1 = σ2 = 11GPa were fixed at a value corresponding to the zero-barrier

region, an increase in compressive Lagrangian strain E3 (i.e., increase of the displacement at

the boundary) leads to the homogeneous transformation process from Si I to Si II, and an

intermediate crystal structure can be arrested (see Fig. 2 B and supplemental videos 1 and

3-5). Away from the merged region, when Si I loses its stability, transformation occurs through

nucleation of Si II followed by formation of Si II bands (like in Fig. 2A and video 2) and their

growth until completing the PT. This happens both under prescribed stresses and prescribed

and changing strains, i.e., homogeneous intermediate structures are not observed and cannot

be stabilized away from the zero-barrier region.

When we start with a two-phase structure under fixed strain E3 and increase tensile stresses

σ1 = σ2 toward the merged region, the two-phase Si I-Si II structure continuously transforms

with increasing σ1 to the intermediate homogenous phase (Fig. 2A and movie 3) that is

determined by E3. When starting with a homogeneous intermediate phase and reducing tensile

stress σ1 = σ2, the same structures are observed at the same stresses (movie 4), i.e., the

transformation process is fully reversible without hysteresis. Presence of two-phase structure

and continuous transition to and from it from and to homogeneous intermediate structures,

the same for sample sizes from 5 to 40 nm, prove that the homogeneous transformation is
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Figure 2: Nanostructure evolution in silicon during phase transformation. (A) Trans-
formation of two-phase Si I-Si II mixture into intermediate homogeneous phases at prescribed
compressive Lagrangian strain E3 = −0.31 and increasing tensile stresses σ1 = σ2. (B) Homo-
geneous transformation process from Si I to Si II through continuum of homogeneous phases
with increasing strain E3 at fixed stresses σ1 = σ2 = 11GPa. Colors characterize the local
von-Mises shear strain.
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Figure 3: True stress σ3 versus Lagrangian strain E3 for various fixed stresses σ1 =
σ2 and increasing/decreasing E3 during Si I↔Si II PT. Lattice instability points
for Si I→Si II PT correspond to the local maxima of stresses while for Si II→Si I PT they
correspond to the local minima. Between them, transformation path passes through continuum
of intermediate homogeneous phases.

not caused by small sample size and/or periodic boundary conditions. Thus, all our

thermodynamic predictions have been confirmed for Si I↔Si II PTs, which occur at large

elastic and transformational strains.

An additional insight can be obtained by analyzing stress-strain curves for Si I↔Si II PTs

in Fig. 3, which are the same for increasing and decreasing strains E3. In the stress σ1 range

10 − 13GPa, some small differences between instability stresses for direct and reverse PTs

are observed, but they are within ±1%, which is below the simulation error. That is why

we claim that both instability lines in Fig. 1 merge within a finite stress σ1 range. Strain

distribution within the instability region is homogeneous for σ1 ≥ 10GPa and for each E3
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Figure 4: Properties of locally unstable intermediate homogeneous phases. Bold
dots designate instability points. (A) Components of deformation gradient F3 = c/c0 and
F1 = a/a0 for σ = 9GPa vs. F3. Lines are based on crystal cell parameters and symbols
are calculated based on the intracell atoms. (B) Potential energy versus F3 for two different
stresses σ1.

describes intermediate homogeneous phase.

With increasing stress σ1, the difference in strain for initiation of the direct and reverse PTs

reduces and reaches zero at 14GPa, which substitutes the first-order PT with the second order

PT (Fig. 3 and movie 6). In contrast to known second-order PTs, which are related to the

shift of intracell atoms and corresponding change in symmetry and occur at small strains, here

there are no intracell atomic displacements (Fig. 4A) and changes in symmetry, and strains are

very large. This second-order PT only represents a large jump in elastic modulus. A further

increase in σ1 leads to disordered phase, which will be discussed elsewhere.

The possibility of arresting intermediate homogeneous phases, if confirmed by experiments,

opens unprecedented opportunities to study their properties and the entire transformation

process. For example, how do semiconducting properties change to metallic ones and at what

stage? What are the structures with intermediate semiconducting-metallic states? What

are the thermodynamic and mechanical properties of intermediate states that participate in

Landau-type theory for stress-induced displacive PTs [8, 12]? There was never a way to

determine them directly experimentally. Intermediate homogeneous phases may exhibit some
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unknown and extraordinary properties, which could find corresponding applications.

Note that homogeneous strain was also observed for σ1 = 9GPa (supplemental video 5)

and the stress-strain curve shown in Fig. 3 is the same for sample sizes from 5 to 40 nm.

Since there is a small but finite Gibbs energy barrier between Si I and Si II, these intermediate

homogeneous phases are not in indifferent equilibrium. Even better, it shows the possibility to

stabilize intermediate locally unstable homogeneous phases, including the phase correspond-

ing to the local energy maximum. The alternative two-phase structure is suppressed due to

interfacial energy and energy of internal elastic stresses. At the lower stress σ1 = 8GPa the

intermediate heterogeneous nanostructure is stabilized (supplemental video 2), in which strain

oscillates with the magnitude of 5% without clear phases and interfaces. At σ1 = 6.9GPa, in-

termediate low-strain phase is (almost) homogeneous but the high-strain phase region is much

thinner than the interface region and does not possess homogenous-strain portion. Again,

our thermodynamic prediction of slightly heterogeneous intermediate structures and structures

with broad interfaces is confirmed with MD simulations. Stabilized intermediate heterogeneous

states may also possess interesting properties.

Fig. 4 presents some properties of intermediate homogeneous phases. Components of the

deformation gradients F3 = c/c0 and F1 = a/a0, where c and a are the lattice parameters of the

deformed tetragonal cell and subscript 0 corresponds to the unstrained initial lattice (a0 = c0),

are presented in Fig. 4A. Interestingly, that linear relationship for F1 for intermediate phases is

just a smooth linear continuation of the curve for Si I, despite the large strains and nonlinear

elasticity. When F1 and F3 were calculated based on the intracell atoms, results were the

same. That means that the Cauchy-Born hypothesis is met, i.e., intracell atoms do not have

independent degrees of freedom; consequently, they cannot cause instability for first- and

second-order PTs. The potential energy of the system vs. strain E3 is presented in Fig. 4B.

While for σ1 = 0GPa this is the energy of the mixture of Si I and Si II, for σ1 = 9GPa this

is the energy of the locally unstable intermediate homogeneous phases. Linear energy vs. E3

corresponds to constant energetic stress.

We also found that if one varies σ2 6= σ1 keeping σ2+σ1 = const, this practically does not af-

fect σd
3 or σr

3. This significantly broadens the stress states for which intermediate homogeneous

phases and hysteresis-free PT can occur.
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To summarize, we predicted thermodynamically and proved with MD simulations for Si

I↔Si II PTs new phenomenon of homogeneous and hysteresis-free first-order PT. A broad

range of special triaxial compression-tension states was found for which the stresses for the

lattice instability for direct and reverse PTs were the same. Since the energy barrier between

two phases disappears, and the Gibbs energy landscape has a constant flat region, each inter-

mediate state along the transformation path is in a neutral thermodynamic equilibrium and

can be considered as a separate intermediate phase. Thus, there is a continuum of the inter-

mediate phases with homogeneous and hysteresis-free transformations between them. Each

intermediate phase can be arrested and studied by fixing the strain in one direction. By ap-

proaching these stress states, the interface width in a traditional two-phase system increases

and diverges, interface energy tends to zero, and a two-phase structure continuously transforms

to homogenous intermediate phases. This also allows for the stabilization of unique slightly

heterogeneous intermediate structures with broad and controlled interface widths, which may

possess unexpected properties. As it was found in [17, 18, 16, 19, 20], ratio of the thickness

of widths of two different phase interfaces drastically affects nano- and macroscale transfor-

mational properties for various PTs. Thus, multiaxial stresses may allow to vary this ratio in

a broad range, producing new properties and phenomena. Zero hysteresis and homogeneous

transformations are the optimal property for various PT-related applications [2, 3, 4, 4, 5],

which reduce damage and energy dissipation. Further increases in stresses substitute the first-

order PT with the unusual second-order PT, without intracell atomic displacements and change

in symmetry, and at large strains.

While it is well-known that utilization of first principle simulations instead of MD would

deliver more reliable results for Si and other materials, our results are sufficient for conceptual

proof. Similar phenomena and phases may be found in many other materials. Since there is

no fundamental reason for collinearity of the instability lines, they should intersect for many

material systems. The practical problem is whether this region is achievable before fracture

or plastic flow occurs. Materials in which homogenous PTs may occur could be designed

by proper multicomponent alloying, as was done for shape memory alloys [2, 3, 4] or caloric

materials [4, 5]. Multiaxial loading can be combined with other stimuli, like temperature

and magnetic field, which will increase the chances to find zero-hysteresis transformations
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and intermediate homogeneous phases for economically realistic external stimuli. If confirmed

by experiments, these results will allow one to control/reduce the stress hysteresis, interface

energy and dissipation and reduce damage by controlling multiaxial stress state and other

fields, which may revolutionize field of transforming materials, in particular, for elastocaloric

and smart material applications.
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