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We report a lattice QCD calculation of the hadronic light-by-light contribution to the muon
anomalous magnetic moment at physical pion mass. The calculation includes the connected dia-
grams and the leading, quark-line-disconnected diagrams. We incorporate algorithmic improvements
developed in our previous work. The calculation was performed on the 483× 96 ensemble generated
with a physical-pion-mass and a 5.5 fm spatial extent by the RBC and UKQCD collaborations using
the chiral, domain wall fermion (DWF) formulation. We find aHLbL

µ = 5.35(1.35) × 10−10, where
the error is statistical only. The finite-volume and finite lattice-spacing errors could be quite large
and are the subject of on-going research. The omitted disconnected graphs, while expected to give
a correction of order 10%, also need to be computed.

I. INTRODUCTION

The lattice calculation of the hadronic light-by-light
contribution to the muon anomalous magnetic moment
is part of the on-going effort to better understand the
approximately three standard deviation difference be-
tween the extremely accurate BNL E821 experimental
result and the current theoretical calculation with sim-
ilar accuracy [1]. The muon anomalous magnetic mo-
ment is characterized by the small dimensionless num-
ber aµ = (gµ − 2)/2, the muon anomaly. Here the
g-factor gµ determines the magnetic moment of muon,
~µ = ~sgµe/2mµ where ~s is the spin angular momentum of
the muon. The muon anomaly can be determined from
the form factor F2 which appears in the matrix element
of the electromagnetic current:〈

µ(~p ′)|Jν(0)|µ(~p)
〉

(1)

= −eū(~p ′)

(
F1(q2)γν + i

F2(q2)

4m
[γν , γρ]qρ

)
u(~p),

where aµ = F2(0). Here Jν(0) is the electromagnetic cur-
rent, |µ(~p)〉 and |µ(~p ′)〉 the initial and final muon states,
q = p′ − p, and Euclidean-space conventions are used.

A particle’s anomalous magnetic moment results from
its extended spatial structure. For an elementary Dirac
particle, such as an electron, muon or tau lepton, with
only electroweak interactions, such structure will arise
from the electroweak interactions themselves. These ef-
fects can be computed with high precision using per-
turbation theory, with the leading term being the well
known result of Schwinger: a = α/2π [2] where α is the

∗ ljin.luchang@gmail.com

fine structure constant. However, new, high-energy phe-
nomena that appear at an energy scale Λ can introduce
additional structure, leading to new contributions to al
that are typically suppressed by the ratio (ml/Λ)2 where
l = e, µ or τ and ml is the mass of the corresponding
lepton. The muon anomaly may be the best place to
search for such phenomena since aµ can be more accu-
rately measured than aτ while mµ is 207 times larger
than me.

The current result of the BNL experiment E821 is
aexpµ = 11659208.0(6.3)×10−10 [3]. More accurate exper-
iments are planned at Fermilab (E989) [4] and J-PARC
(E34) [5], which aim to reduce the error by a factor of
four. Theoretically, the contributions to gµ − 2 can be
divided into four categories. The first is the QED contri-
bution, which is the largest [6]. The second is the elec-
troweak correction, which is small but not negligible [7].
Both the QED and electroweak contribution can be com-
puted with perturbation theory and the uncertainties are
very small.

q = p′ − p, ν

p p′

q = p′ − p, ν

p p′

Figure 1. Left: the hadronic vacuum polarization (HVP) di-
agram. Right: the hadronic light-by-light (HLbL) diagram.
The muon and photon lines are shown explicitly while the
quark loops and exchanged gluons of QCD are represented
by the shaded circles.

The third and fourth contributions enter at second and
third order in α and involve virtual quark loops, introduc-
ing the non-perturbative challenges of QCD. The third
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is the hadronic vacuum polarization (HVP) contribution
which enters at order α2 and corresponds to the left dia-
gram in Fig. 1. The fourth is the hadronic light by light
(HLbL) contribution, corresponds to the right diagram
in Fig. 1 and enters at order α3.

The HVP contribution is the largest hadronic contri-
bution and can be computed from a dispersion relation
and experimental e+e− annihilation data. This is a well-
developed method with a fractional-percent error. The
leading-order HVP contribution is 692.3(4.2)× 10−10 [8]
or 694.9(4.3) × 10−10 [9]. This dispersive approach is
an active research area and results with reduced errors
should be expected [10]. The HVP contribution can also
be calculated with lattice QCD. With recently developed
methods and increased computational power, similar or
even higher precision results may be possible [11–15].
In contrast, the HLbL contribution is at present only
estimated by model calculations which give a result of
10.5(2.6) × 10−10 [16, 17] or 11.6(3.9) × 10−10 [1]. This
method is difficult to improve further although it is pos-
sible to compare the model result for hadronic light-by-
light scattering with a lattice result for this scattering
amplitude [18]. A dispersion relation analysis of the
HLbL contribution is not available although work is un-
derway in this direction [19–24].

Combining these results gives the standard model pre-
diction asmµ = 11659184.0(5.9)×10−10 which differs from
the experimental value above by aexpµ −asmµ = 24.0(6.9)×
10−10, about twice the estimate for the HLbL contribu-
tion. Thus, a systematically improvable, lattice determi-
nation of the HLbL contribution is needed to resolve or
firmly establish the discrepancy.

The complete set of HLbL diagrams include the con-
nected diagrams in Fig. 2 and the disconnected diagrams
in Fig. 3, 4, and 5. Only quark loops that are directly
connected to photons are drawn in the figures. This is be-
cause only these quark propagators need to be explicitly
calculated on the lattice. The effects of gluons and other
quark loops are included automatically through the eval-
uation of these explicit quark propagators and the use
of an unquenched gauge ensemble. Although there are
many different types of disconnected diagrams, only one
type, shown in Fig. 3, survives in the SU(3) limit. The
other diagrams, shown in Figs. 4 and 5, vanish in SU(3)
limit because they contain quark loops that couple only
to one photon and the sum of the charges of the u, d, s
quarks is zero. Also, because the strange quark carries
only 1/3 of the electron charge, diagrams that are sup-
pressed by the difference between the strange and light
quark masses are suppressed by their charge factors too.

The first attempt using lattice QCD to compute the
connected contribution to HLbL was made by Blum,
Chowdhury, Hayakawa, and Izubuchi [25], which demon-
strated the possibility of performing such calculation.
A series of improvements in methodology were made
in Ref. [26], eliminating two sources of systematic ef-
fects arising from the use of larger-than-physical electric
charge and non-zero momentum transfer. The methods

xsrc xsnky′, σ′ z′, κ′ x′, ρ′

xop, ν

z, κ
y, σ x, ρ

xsrc xsnky′, σ′ x′, ρ′ z′, κ′

xop, ν

z, κ
y, σ x, ρ

Figure 2. Connected hadronic light-by-light diagrams. There
are four additional diagrams resulting from further permuta-
tions of the photon vertices on the muon line.

xsrc xsnkz′, κ′ y′, σ′ x′, ρ′

xop, ν

z, κ y, σ x, ρ

Figure 3. Leading-order disconnected diagram which is non-
zero in SU(3) limit. There are additional diagrams which can
be obtained from permutation of the photon vertices on the
muon line.
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Figure 4. Disconnected diagrams of order ms−ml. There are
additional diagrams which can be obtained from permutation
of the photon vertices on the muon line.
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Figure 5. Disconnected diagrams of order (ms −ml)
2 and

higher. There are additional diagrams which can be obtained
from permutation of the photon vertices on the muon line.

presented in Ref. [26] also lead to a substantial reduction
in the statistical noise making a direct lattice calcula-
tion with a physical pion mass possible. Here, we report
the result of the first connected HLbL lattice calculation
with physical pion mass. In addition to the connected
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HLbL calculation, we extended the methods of Ref. [26]
and compute the leading disconnected diagrams shown
in Fig. 3 using the same set of configurations. This is the
first disconnected HLbL calculation and the result sug-
gests that the leading order disconnected diagrams are
quite important.

II. COMPUTATIONAL STRATEGY

We begin with the equation for the form factor
F cHLbL
2 (0) derived in Ref. [26] for the moment method:

1

2m
F cHLbL
2 (q2 = 0)σis′,s =

∑
r,z̃

Z
(r

2
,−r

2
, z̃
)

(2)

×
∑
x̃op

1

2
εi,j,k (x̃op)j · iūs′(~0)FCk

(r
2
,−r

2
, z̃, x̃op

)
us(~0),

where the σis′,s are the conventional Pauli matrices and
the weight function Z is defined by

Z(x, y, z) =


3

if |x− y| < |x− z|
and |x− y| < |y − z|

3/2
if |x− y| = |x− z| < |y − z|
or |x− y| = |y − z| < |x− z|

1 if |x− y| = |x− z| = |y − z|
0 otherwise

.(3)

The integration variables in Eq. (2) are related to the co-
ordinates in Fig. 2 by the following equations: r = x− y,
z̃ = z−(x+y)/2, x̃op = xop−(x+y)/2. We compute the
summation over r in Eq. (2) by stochastically sampling
the points x and y while the sums over x̃op and z̃ are per-
formed exactly over the entire lattice. The weight factor
Z exploits the symmetry of the integrand in Eq. (2) to
insure that the exactly integrated point z is at least as
distant from both x and y as they are from each other,
resulting in a deterministic treatment of this difficult-to-
sample, long-distance region.

The amplitude FCν (x, y, z, xop) is obtained from the
average of the function Fν (x, y, z, xop) over the three
cyclic permutations of the positions x, y and z where

Fν (x, y, z, xop) (4)

= (−ie)6 Gρ,σ,κ (x, y, z, xsnk, xsrc)
∑

q=u,d,s

(eq
e

)4
×
〈
− tr

[
γρSq(x, z)γκSq(z, y)γσ

·Sq (y, xop) γνSq (xop, x)
]〉

QCD
.

This equation expresses the connected HLbL amplitude
as the average over QCD gauge configurations of the trace
of the product of four quark propagators (Sq) multiplied
by a factor Gρ,σ,κ, constructed from muon and photon

propagators:

Gρ,σ,κ (x, y, z)= emµ(tsnk−tsrc) (5)

×
∑

x′,y′,z′

Gρ,ρ′(x, x
′)Gσ,σ′(y, y′)Gκ,κ′(z, z′)

×

{ ∑
~xsnk,~xsrc

[
Sµ (xsnk, x

′) γρ′Sµ(x′, z′)γκ′

·Sµ(z′, y′)γσ′Sµ (y′, xsrc)

+ five permutations of x′, y′ and z′
]}
.

where eu/e = 2/3, ed/e = es/e = −1/3.
We evaluate the muon propagators in Eq. (5) using

infinite-Ls, DWF on a lattice assigned the same lattice
spacing and with the same lattice volume as the QCD
gauge ensemble. (Here Ls is the extent of the fifth di-
mension for the DWF formalism.) The photon propaga-
tors are evaluated in Feynman gauge and all modes with
vanishing spatial momentum are omitted [27]. Because
G involves a zero-mass photon, finite volume effects are
suppressed only by powers of the lattice size.

We also employ the moment method described above
for the disconnected diagrams in Fig. 3 using

1

2m
F dHLbL
2 (q2 = 0)σis′,s =

∑
r,x̃

∑
x̃op

1

2
εi,j,k (x̃op)j (6)

·iūs′(~0)FDk (x̃, 0, r, r + x̃op)us(~0).

The integration variables are related to the coordinates
in Fig. 3 by the equations: r = z − y, x̃ = x − y and
x̃op = xop − z. As in the connected case, the sum over
x̃ and x̃op is performed over all lattice sites but the sum
over r is performed by stochastically sampling the points
z and y. The amplitude FDν (x, y, z, xop) is given by:

FDν (x, y, z, xop) = (−ie)6emµ(tsnk−tsrc)Gρ,σ,κ (x, y, z) (7)

×
〈

1

2
Πν,κ (xop, z)

[
Πρ,σ(x, y)−Πavg

ρ,σ (x− y)
]〉

QCD

where

Πρ,σ(x, y) = −
∑
q

(eq/e)
2 Tr

[
γρSq(x, y)γσSq(y, x)

]
. (8)

The subtraction shown inside the square brackets in the
second line of Eq. (7) is performed only as a noise re-
duction technique. It does not affect the central value
provided the subtraction term Πavg

ρ,σ (x− y) remains con-
stant in the ensemble average. This is a consequence
of space-time reflection symmetry: 〈Πν,κ (xop, z)〉QCD =

〈Πν,κ (−xop,−z)〉QCD. As a result, the moment in Eq. (7)

of a single factor of 〈Πν,κ (xop, z)〉 vanishes:∑
x̃op

1

2
εi,j,k (x̃op)j 〈Πk,κ (x̃op, 0)〉QCD (9)

=
∑
x̃op

1

2
εi,j,k (−x̃op)j 〈Πk,κ (−x̃op, 0)〉QCD = 0.
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The ensemble average of the Π function, 〈Πρ,σ(x, y)〉QCD,
is a good choice for the subtraction term Πavg

ρ,σ (x− y). In
our calculation, we set Πavg

ρ,σ (x − y) to be the average
of the contractions of 32, uniformly-distributed, point-
source propagators, all of which are computed using a
single configuration in our ensemble. That configuration
is not used elsewhere in the calculation.

Note that a similar subtraction would be essential if the
moment method were not being used, in order to avoid
double counting a contribution that is conventionally in-
cluded as two hadronic vacuum polarization corrections
to the O(α) QED contribution to aµ [28].

III. COMPUTATIONAL DETAILS

The HLbL calculation is performed on the 483 × 96
physical-pion-mass ensemble generated by the RBC and
UKQCD collaborations [29]. The calculation is carried
out on 65 configurations, separated by 20 molecular-
dynamics time units.

In the connected-diagram calculation, for each config-
uration, we sample 112 short-distance point-pairs with
|r| 6 5 in lattice units, and 256 long-distance point-pairs
with |r| > 5. The 112 short-distance distance point-pairs
cover all possible values of r up to discrete symmetries on
the lattice, which include reflections and π/2 rotations.
In fact, all r with |r| 6 2 are computed twice. For the
long-distance point-pairs, the probability of choosing one
particular relative distance r is p(r) ∝ exp(−0.01|r|)/|r|4,
an empirically suggested choice. The first point of all
these point-pairs is chosen independently, uniformly dis-
tributed over the lattice. The second point is chosen
according to the distribution in r described above.

In the disconnected-diagram calculation, for each con-
figuration we randomly choose 256 spheres, each of ra-
dius 6, and 4 points are sampled uniformly within each
sphere. Duplication of the points is avoided in the sam-
pling process. Overall, 1024 points are sampled for each
configuration. Half of these points are also used to com-
pute point-source, strange-quark propagators. All the
combinations of these points form (1024 + 512)2 point-
pairs and all are used in the calculation. This provides a
very large number of point-pairs, sufficient to reduce the
statistical error from the disconnected diagrams down to
the level of the error from the connected diagrams.

The largest computational effort in this calculation is
required to evaluate the light quark propagators, making
it important to use a method which gives results with suf-
ficient accuracy at a minimum computational cost. This
is achieved here by using the AMA method [30, 31] de-
tailed below. In addition, we use the zMöbius DWF vari-
ant [32] to reduce Ls from the value of 24, used in when
generating the ensemble, to Ls = 10, further accelerating
the Dirac inversions. We use three accuracy levels in this
AMA calculation: sloppy, median and exact.

Most of the light quark propagators are obtained us-
ing sloppy inversions. These are evaluated using the

zMöbius variant of DWF with Ls = 10, deflated using
2000 eigenvectors obtained from the Lanczos algorithm
and 200 single-precision, conjugate gradient (CG) itera-
tions. We extend some of these sloppy inversions with
a defect-correction and deflation step, followed by 200
single-precision iterations to achieve the median level of
accuracy. Finally, the exact propagators are obtained
from the MADWF algorithm [33], iterated until the re-
sults reach a precision of 10−8 (i.e. the norm of the resid-
ual is 10−8 times smaller than the norm of the source).

For the strange quark propagators, no deflation is per-
formed. The sloppy inversions use the same zMöbius
Dirac operator with the strange quark mass and 300
single-precision iterations. The median inversions use an
additional defect correction step followed by 300 single-
precision iterations. The exact inversions use the unitary
Mobius Dirac operator and then perform sufficient CG
iterations that the propagators reach a 10−8 precision.

In the connected-diagram calculation, only the light
quark contribution is included. (The strange quark con-
tribution will be substantially smaller because of both its
heavier mass and an overall charge factor of 1/17.) We
compute an additional 12 point-pairs with sloppy and
median propagators and use the correlated difference be-
tween the sloppy- and median-precision results to reduce
the numerical error to that present in a median-precision
calculation. These 12 point pairs are sampled with proba-
bility p(r) ∝ exp(−0.07|r|)/|r|2. Finally, among these 12
point-pairs, 4 point-pairs are computed with exact prop-
agators and the correlated difference between the median
and exact results is used to reduce the numerical error to
the exact level. The corrections introduced at each step
of this two-step AMA correction are 1% and statistically
consistent with zero.

In the disconnected-diagram calculation, both the
light- and strange-quark contributions are included al-
though the strange quark contributes less than 5%. We
use the same set of points for the light- and strange-
quark AMA corrections. From 512 points, 32 points are
also computed with median propagators. Among these
32 points, 8 points are also computed with exact propa-
gators. The correlated sloppy-median and median-exact
differences are used to compute the correction. By mak-
ing this correction we replace the unknown numerical er-
ror in the sloppy-precision calculation with the known
statistical error of the correction.

IV. ANALYSIS AND RESULTS

Following the procedure described above we obtain the
following results:

acHLbL
µ = (11.60± 0.96)× 10−10 (10)

adHLbL
µ = (−6.25± 0.80)× 10−10 (11)

aHLbL
µ = (5.35± 1.35)× 10−10, (12)
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where the errors shown are statistical only. These results
are obtained from a single gauge ensemble with an inverse
lattice spacing of a−1 = 1.730(4) and a spatial size of
L = 5.476(12) fm.

Because the integration over r is performed as the last
step when evaluating Eqs. (2) and (7) by summing over
the stochastically-sampled point-pairs, we can study the
contribution to F2 as a function of r as shown in Fig. 6.
From the left plot we can see that most of the connected-
diagram contribution comes from a separation of |r| 6 10
in lattice units, while for the disconnected diagrams, the
signal vanishes more slowly and its large-r behavior is
obscured by the noise. The smaller, large-r contribution
seen for the connected diagrams comes partly from our
use of the weight factor Z in Eq. (2) to shift the contri-
bution toward the short-distance region, a strategy not
possible in the disconnected case.
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Figure 6. Histograms of the contribution to F2 from different
separations |r|. The ith bin includes contribution from region
where i−1 < |r| 6 i. The sum of all bins gives the final result
for F2. Left: the cHLbL contribution where r = x−y. Right:
the dHLbL contribution where r = z − y.

The disconnected-diagram contribution is quite large
and negative, which may be partly explained by the size
of the π0-pole contriubtions to the disconnected parts of
the amplitude [34, 35].

V. CONCLUSION

We have presented the first lattice calculation of the
connected, hadronic light-by-light contribution to the
muon anomalous magnetic moment at physical pion mass
and the first lattice calculation of the leading discon-
nected hadronic light-by-light contribution, also at phys-
ical pion mass. We find that the disconnected diagrams
contribute negatively and cancel approximately half of
the connected contribution. While the combined result
is much smaller than that of most model calculations,
we expect large finite-volume and finite-lattice-spacing

corrections, both of which were found to increase the
result in our previous calculations using smaller lattice
volumes [26]. Consequently, our lattice QCD result for
the hadronic light-by-light scattering contribution to aµ
reported in Eq. (12) should not be viewed as inconsistent
with the result of model calculations. However, this lat-
tice result is completely independent from those model
calculations, with unrelated systematic errors. There-
fore the calculation reported here makes it even more
unlikely that the present discrepancy between the exper-
imental result for aµ and the prediction of the standard
model might be completely explained by an error in the
estimate of the hadronic light-by-light scattering contri-
bution.

Since the largest finite-volume errors are expected to
arise from the QED part of the calculation, they may be
reduced by performing only the QED part of the calcula-
tion in a larger or possibly infinite volume [36–38]. This
is an extension of the calculation reported here which
should be practical with current computational resources.
The finite-lattice-spacing errors can be removed by per-
forming the same calculation on a 643×128 lattice with a
smaller lattice spacing [29], which can then be combined
with the present calculation to extrapolate to vanishing
lattice spacing, a calculation that is now underway.
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