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Soft function relevant for transverse-momentum resummation for Drell-Yan or Higgs production at
hadron colliders are computed through to three loops in the expansion of strong coupling, with

the help of bootstrap technique and supersymmetric decomposition.

The corresponding rapid-

ity anomalous dimension is extracted. An intriguing relation between anomalous dimensions for
transverse-momentum resummation and threshold resummation is found.

Introduction. The transverse-momentum (q,) distri-
bution of generic high-mass color-neutral systems (Drell-
Yan lepton pair, Higgs, EW vector boson pair, etc.) pro-
duced in hadron collisions is of great interest since the
early days of Quantum ChromoDynamics (QCD) [1-17].
It provides a testing ground for examination and im-
provement of our understanding of QCD, both pertur-
batively and non-perturbatively. When ¢, is small com-
pared with the invariant mass @) of the system, fixed-
order perturbation theory breaks down due to the ap-
pearance of large logarithms of the form In"(¢2/Q?)/¢2,
with £ > 0 at each order in strong coupling as. These
large logarithms originate from incomplete cancellation
of soft and collinear divergences between real and vir-
tual diagrams. Fortunately, Collins, Soper, and Ster-
man (CSS) have shown that they can be systematically
resummed to all orders in perturbation theory [5], thanks
to QCD factorization.

In recent years, there have been increasing interests
in applying Soft-Collinear Effective Theory (SCET) [18-
22] to resum large logarithms in perturbative QCD using
renormalization group (RG) method. For ¢, resumma-
tion this has been done by a number of authors [23-
29]. For transverse-momentum observable, the relevant
momentum modes in light-cone coordinate for fields in
the effective theory are soft ps ~ Q(X, A\, A), collinear
pe ~ Q(N\%,1,\) and anti-collinear p; ~ Q(1, A2, \). Here
A ~ ¢qr/Q is a power counting parameter. The corre-
sponding effective theory is SCET}; . An important fea-
ture of SCET}; is that soft and collinear modes live on
the same hyperbola of virtuality, p? ~ p? ~ p2 ~ \2Q?.
Besides the usual large logarithms of ratio between hard
scale Q and soft scale \Q, there are also large rapid-
ity separations between soft, collinear, and anti-collinear
modes which need to be resummed. In this Letter we
adopt the rapidity RG formalism of Chiu, Jain, Neill, and
Rothstein [27, 28]. According to the rapidity RG formal-
ism, cross section at small ¢, factorizes into hard func-
tion H, Transverse-Momentum-Dependent (TMD) beam
functions B, and TMD soft function S| . Schematically
the factorization formula reads:
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Large logarithms in virtuality is resummed by running
in the renormalization scale p, while large logarithms in
rapidity is resummed by running in the rapidity scale
v. The p evolution of the hard function can be derived
from quark or gluon form factor and is well-known [30-
32]. Since the physical cross section is independent of
and v order by order in the perturbation theory, it follows
that the p and v evolution of [B ® B] is fixed once the
corresponding evolution for the soft function is known.
The knowledge of 1 and v evolution of hard, beam, and
soft function, together with the boundary conditions of
these functions at initial scales, determine the all order
structure of large logarithms of ¢,.

The naive definition of the TMD soft function is
a vacuum expectation value of light-like Wilson loops
with a transverse separation, which suffers from light-
cone/rapidity divergence [3]. A proper definition of the
TMD soft function requires the introduction of appro-
priate regulator for the rapidity divergence. Proposals
to regularize the rapidity divergence includes non-light-
like axial gauge without Wilson lines [5], tilting Wilson
lines off the lightcone [33], nearly light-like Wilson lines
with subtraction of soft factor [34], modifying the phase
space measure [26, 27, 35], modifying the ie prescription
of eikonal propagator [36], etc. In this Letter, we follow
the recent proposal [37] by Neill and the current authors
of implementing an infinitesimal shift in the time direc-
tion to the Wilson loop correlator. Specifically, the TMD
soft function with the rapidity regulator of Ref. [37] reads:
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where the two Wilson loops are separated by the distance
yo(b1) = (ibo/v, ibo/v, b1), with by = 2772, S,
are path-ordered Wilson lines on the light-cone. They
carry fundamental or adjoint color indices, depending on
whether the color-neutral system is produced in ¢g anni-
hilation (d, = N,.) or gg fusion (d, = N? —1). T is the
time-ordered operator. The soft function S, in eq. (2)



is closely related to the so-called fully differential soft
function [25], Sk .. The limit ¥ — +oco means that only
the non-vanishing terms of Sy, are kept in that limit.
The important role of Sy . in our calculation will be ex-
plained in the next section. Note that our definition for
the TMD soft function doesn’t rely on perturbation the-
ory. However, we restrict to the perturbatively calculable
part of the soft function in this Letter.

After minimal subtraction of dimensional regulariza-
tion pole 1/¢" in MS scheme, the soft function S| de-
pends on both the renormalization scale 1 and the ra-
pidity scale v. The u evolution of the TMD soft function
is specified by the RG equation:

dln b v 2
% = Teusp [as(p)] In % — s [as ()] (3)
where T'cysp is the well-known light-like cusp anomalous
dimension [38, 39], which is known to three loops in
QCD [40]. ~s is the soft anomalous dimension governing
the single logarithmic evolution, which can be extracted
through to three loops from QCD splitting function [40]
and quark and gluon form factor [30-32], as is confirmed
by explicit three-loop calculation [41]. The rapidity evo-
lution equation for the TMD soft function reads:
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where the rapidity anomalous dimension =, is intro-
duced for the single logarithmic evolution of rapidity
logarithms. Thanks to the non-Abelian exponentiation
theorem [42-44] which our regularization procedure [37]
preserves, the perturbative soft function can be written
as an exponential:

S1(bi,p,v) = exp|asSi +a283 +a’S3 + 0(@@)} (5)

where we have defined as = as(u)/(47) as our per-
turbative expansion parameter throughout this Letter.
The one and two-loop coefficients Si", can be found in
Ref. [37]. In the next section we outline the proce-
dure we used to calculate the three-loop coefficient S3-,
from which the rapidity anomalous dimensions can be
extracted to the same order.

Method. To obtain the TMD soft function S| through
to three loops, we first calculate the fully differential soft
function to the same order. Sy obeys a RG equation
identical to eq. (3) [25]:
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In Sk, v is a parameter of the theory, not a regula-
tor. Therefore the v dependence of Sy, is in general

complicated. The perturbative solution to Sy . is then
determined by eq. (6) and the boundary condition at ini-
tial scale, S];D_(EJ_,M = v,v). Similar to S;, Spp. can
also be written as an exponential, as in eq. (5). The
one and two-loop coefficients S75" were first computed
in Ref. [45], and reproduced in Ref. [37].

By dimension analysis, SF_D,(I; 1,v,v) is a function of
r = —gJQ_UQ/b%. A strategy based on the bootstrap
program for scattering amplitudes [46] is proposed in
Ref. [37] to compute Sgp. (b1 ,v,v), which we briefly re-
call below. In Ref. [45], the one and two-loop coeffi-
cients S773 are written in terms of classical and Nielsens
polylogarithms with argument x. A crucial observation
made in Ref. [37] is that the same results can be written
in terms of harmonic polylogarithms (HPL) Hg(x) [47],
with weight indices drawn from the set {0,1}. Further-
more, for the available one and two-loop data, the left-
most and the rightmost index of the weight vectors were
found to be 0 and 1, respectively. The rightmost index
has to be 1, because the two cusp points of the Wilson
loops are separated by Euclidean distance for < 0, and
no branch cut is expected. On the other hand, the con-
dition on the leftmost-index comes empirically from the
observation of the one- and two-loop results; as we will
show below, this condition breaks down at three loops
in QCD. Nevertheless, for now we proceed with the em-
pirical ansatz for L-loop fully differential soft function
proposed in Ref. [37], which is a linear combination of
HPLs with undetermined rational coefficients, and whose
weight vectors obey the leftmost- and rightmost-index
conditions. The undetermined coefficients of the HPLs
can then be fixed by performing an expansion around
x ~ 0, together with the constraint that rapidity diver-
gence is only a single logarithmic divergence at each or-
der for the expansion coefficients in eq. (5). It turns out
that the x — 0 limit of Srp is smooth, and the ex-
pansion is simply a Taylor series in z. As explained in
Ref. [37], the leading 2° term of the expansion reproduces
the threshold soft function [41], while the coefficient of
2™ can be obtained by inserting a numerator ({71~ —12)"
into the integrand of the threshold soft function, where
l is the total momenta of real radiation from the time-
ordered Wilson loop. Furthermore, using Integration-By-
Parts (IBP) identities [49, 50], integrals with high rank
numerator insertion can be reduced to a small number
of master integrals, which have been computed for other
purpose recently [51-56].

Although the strategy outlined above is straightfor-
ward, it has two caveats. First, the maximal weight of
HPLs at three loops for massless perturbation theory is
6. It follows that the number of coefficients need to be
fixed is E?:o 2¢ = 31. In other words, one needs to insert
a high-rank numerator (I~ — [?)3! into the integrand
of threshold soft function in order to have enough data
to fix the coefficients, which is unfortunately beyond the



ability of the tools for IBP reduction [57-60]. Second,
it is not clear whether the conjectured sets of function
in Ref. [37] is sufficient to describe the three-loop soft
function. To circumvent the above difficulties, we first
perform the calculation for soft Wilson loops whose mat-
ter content [41, 52, 54] resembles those of N = 4 Super-
symmetric Yang-Mills theory (SYM). This has a number
of advantages: 1) it has been observed that for soft
Wilson loops in SCET [41], the results in N'=4 SYM
has uniform degrees of transcendentality with transcen-
dental weight 2L at L loops. Furthermore, the N = 4
results match the maximal-weight part of the correspond-
ing QCD results. Similar phenomenon was first observed
for anomalous dimension of twist-two operator for Wil-
son lines [61]. It also holds for some other quantities,
e.g., perturbative form factor [30, 62, 63]. Assuming that
this is also true in our current calculation, by calculating
Sep. in N =4 SYM first, we should automatically ob-
tain the maximal-weight part of Sy in QCD; 2) since
the AV = 4 SYM results have uniform degrees of transcen-
dentality, there are only 16 coefficients to be fixed at three

3,N=4
u=v
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where ¢§ ., = 492.609N? is the three-loop constant for
threshold soft function in V' = 4 SYM [41]. We have used
the shorthand notation for the HPLs [47] and neglected
the argument x. It is interesting to note that each term in
eq. (7) has uniform sign and integer coefficient. Further-

loops, which can be achieved within the current compu-
tation power; 3) the remaining parts of the QCD result
have transcendental weight lower than 6, therefore only
requires 15 coefficients to be fixed. Alternatively, since
the Feynman diagrams corresponding to the lower-weight
part have less complicated analytical structure, they can
be computed by brute force. Direct calculation can also
test the completeness of the ansatz. And it turns out
that although the ansatz remain complete for the three-
loop N =4 SYM result, it fails for the three-loop QCD
one. Fortunately, for QCD result, a brute-force calcu-
lation for the terms proportional to ny is possible using
the method of Ref. [55]. More importantly, the result for
ny terms indicates which set of functions we should add
to the existing ansatz. The full results, for both N/ =4
SYM and QCD, are presented in the next section.
Results. We first present the results for Sy, in N =4
SYM. We only give the results at the initial scale,
u = v. The full scale dependence can be inferred
from eq. (6). The one and two-loop coefficients can be
found in Ref. [37]. The three-loop coefficient in the four-
dimensional-helicity scheme [64] reads
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more, overall sign is alternating at each order in ag [37].
Similar behavior of alternating uniform signs in pertur-
bative expansion with increasing loop order for certain
observable was known before, see Ref. [48]. The corre-
sponding results for QCD in 't Hooft-Veltman scheme
reads:
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where C, = Cf for Drell-Yan process, and C, = Ca
for Higgs production. c¢3 is the three-loop scale in-
dependent part of the treshold soft function in QCD,
¢ = S8 (7, u = 771), see for example Refs. [37, 41, 65].
It can be found in eq. (3.2) of Ref. [41] by multiply-
ing a casimir rescaling factor C,/C4. We note that the
only term that goes beyond the empirical ansatz [37] is
(Hi1 — Hy1/x) ', which can be inferred from the di-
rect calculation of the ny-dependent part using Feynman
diagram method. Specifically, if all the relevant inte-
grals are known, the result for N'=4 SYM in eq. (7)
can also be obtained using Feynman diagram method, in
a gauge theory with ny = 4 adjoint fermions, n, = 6
adjoint real scalars, and with proper Yukawa interaction
between the fermions and scalars. While the integrals for
the pure gluon contribution are challenging, we manage
to compute the ny- and ns-dependent terms by brute-
force Feynman diagram calculation. We observe that for
both the fermion and scalar contributions, the only addi-
tion needed to correct the empirical ansatz at three loops
is the combination (Hy1 — Hy,1/x). From there we can
readily extract the gluon contribution, which is the same
in /=4 SYM and QCD, by subtracting from eq. (7) the
corresponding fermion and scalar contributions. We can
also conclude that the only addition to the ansatz of the
gluon contribution is the combination (Hq 1 — Hy1/x).

We briefly describe the available checks on our results
in egs. (7) and (8). Firstly, as mentioned above, due
to the relative simplicity in the resulting integrals, we
have been able to compute all the n;-dependent part
in eq. (8) by directly calculating the Feynman diagrams.
We find that our ansatz, even including the (1—1/z)H; 4
term, is insufficient to express the result in the interme-
diate step of the direct calculation. The additional terms
needed are (1 — 1/x)Hy, Hy/x, (xHy — Hy . Interest-
ingly, they all cancel out in the sum of real and virtual
contributions. Secondly, our ansatz can be uniquely fixed
at three loops using the data from Taylor expansion over
x through to x'°. However, we have obtained the expan-
sion data through to x'7, leading to an over constrained
system of equations. We found that the solution exist
and is unique for the system, thus providing a strong
check of our calculation. See, e.g. Ref. [66] for similar
discussion on using over constrained system of equations
to fix ansatz.

I This term cancels out in the A" = 4 combination, as is clear from
eq. (7). It also cancels out in the pure A’ =1 SYM with adjoint
gluino, in which one simply sets ny — C4 and Cp — Ca. We
thank Mingxing Luo and Lance Dixon for pointing out this.

With the fully differential soft function at hand, it is
straightforward to obtain S, by taking the limit v —
+oo using the package HPL [67]. The soft anomalous
dimension 7y through to three loops can be found, e.g.,
in eq. (A.4-6) of Ref. [41] by an rescaling factor C,/Cjy.
The rapidity anomalous dimensions are given by:
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Note that vj and 7] can be obtained from QCD anoma-
lous dimension known long time ago [68-70]. They have
also been reproduced in SCET recently [37, 71-73]. The
three-loop coefficient 5 is new and is one of the main
results of this Letter. It is also straightforward to ob-
tain the boundary condition of S at the initial scale,
cg =Sz (br,p="bo/|bL],v=bo/[bL]):
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Discussion. The explicit results for the rapidity anoma-
lous dimension in eq. (9) can be rewritten in a remarkable
form:

Y% =7



Y1 =77 — Boci
Y2 =75 — 2Bocy — Bici +2C.CaBols (11)

Eq. (11) is interesting because it connects between very
different objects: the rapidity anomalous dimension .,
the soft anomalous dimension -y, the threshold constant
cs, and the QCD beta function. Similar relation also
holds in ' = 4 SYM by dropping the beta function terms
in eq. (11).

In the CSS formalism, the resummation of large g,
logarithms is controlled by two anomalous dimension,
Alas(p)] = X,21 0k A; and Blag(p)] = Y,_, aLB;. It
is straightforward to express these anomalous dimension
in terms of the anomalous dimension in SCET, see e.g.
Ref. [26, 74]. In particular, we obtain the B anomalous
dimension in the original CSS scheme through to three
loops:

Bi =7 —
By =) =1 + Bocy

r 1 2
By =n§ =5+ Biel +260(cf - 5(c1)")  (12)

where 7, is the anomalous dimension of hard function
results from matching QCD onto SCET. ¢, is the scale
independent terms of the hard matching. For Drell-Yan
production they can be extracted from quark form fac-
tor [30-32], while for Higgs production from gluon form
factor [30-32], and additionally from effective coupling
of the Higgs boson to gluons [75]. Eq. (12) partially ex-
plains the close connection between ~, and 75, because
the combination vy — 75 is given by the §(1 — x) part of
the single pole in the QCD splitting function [40]. Sub-
stituting the actual numbers in eq. (12), we find

BPY = -8, BYY =13.3447 + 3.4138n;,
BYY =17358.86 — 721.516n) +20.5951n2  (13)

for Drell-Yan production. For Higgs production, the re-
sults are

Bf' = —-22+1.33333ny, Bj =658.881—45.9712n/,

B§ =35134.6 — 7311.10 ny + 293.017 n;
2 mj
—(836 4 184ny — 14.2222n%) In — (14)
H
The one and two-loop results are known for a long
time [68-70]. The three-loop results are new. We note
that numerically B2Y is quite large for ny = 5.

In summary, we have presented the first calculation
of soft function for transverse-momentum resummation
in rapidity RG formalism through to three loops, using
the rapidity regulator recently introduced in Ref. [37].
As a by product, we have also obtained the fully dif-
ferential soft function to the same order. Our calcula-
tion combine the use of bootstrap technique and super-
symmetric decomposition in transcendental weight. We

found a surprising relation between the anomalous di-
mensions for the transverse-momentum resummation and
the threshold resummation, whose explanation calls for
further investigation. Owur three-loop results pave the
way for transverse-momentum resummation for produc-
tion of color neutral system at hadron colliders at N*LL
4+ NNLO accuracy. The method and results of our calcu-
lation also make generalizing g,-subtraction method [76]
to N3LO promising.
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