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Collective pair conversion νeν̄e ↔ νxν̄x by forward scattering, where x = µ or τ , may be
generic for supernova neutrino transport. Depending on the local angular intensity of the elec-
tron lepton number carried by neutrinos, the conversion rate can be “fast,” i.e., of the order of√

2GF(nνe−nν̄e) � ∆m2
atm/2E. We present a novel approach to understand these phenomena: A

dispersion relation for the frequency and wave number (Ω,K) of disturbances in the mean field of
νeνx flavor coherence. Run-away solutions occur in “dispersion gaps,” i.e., in “forbidden” intervals
of Ω and/or K where propagating plane waves do not exist. We stress that the actual solutions also
depend on the initial and/or boundary conditions which need to be further investigated.

PACS numbers: 14.60.Pq, 97.60.Bw

Introduction.—The physics of core-collapse supernova
(SN) explosions and neutron-star (NS) mergers raises
unique questions about flavor evolution in environments
where neutrinos are dense. Their decoupling strongly de-
pends on flavor because β reactions dominate for νe and
ν̄e. As a result, the νeν̄e flux of the SN accretion phase
exceeds the νxν̄x fluxes [1], an effect that is even more
pronounced in NS mergers [2, 3]. Moreover, the SN νe
flux is larger than the ν̄e one (deleptonization) and the
other way round in NS mergers.

The subsequent flavor evolution matters because SN
neutrinos not only carry away energy, but also deposit
some of it in the gain region below the stalled SN shock
by νe + n → p + e− and ν̄e + p → n + e+, thus driving
the delayed explosion. At later stages, neutrinos regulate
the nucleosynthesis outcome in the neutrino-driven wind.
The neutrino signal from the next nearby SN will also
depend on the flavor ratio.

In the SN region of interest, the matter density is large
and suppresses conventional flavor conversion of the type
νe(p) → νx(p) which is driven by neutrino masses and
mixing. This effect becomes important only at larger
radii where neutrinos undergo an MSW resonance [4].
Stochastic density variations from turbulence might stim-
ulate flavor conversions [5], but have been found to be
ineffective during the accretion phase [6].

Neutrino-neutrino interactions can famously change
this picture [1, 7–15] because flavor off-diagonal refrac-
tion by νeνx coherence spawns conversion [16–18]. In
this way, neutrinos feed back upon themselves and can
develop collective run-away modes. Neutral-current in-
teractions preserve flavor, so we are dealing with fla-
vor exchange of the type νe(p) + νx(k)↔ νx(p) + νe(k)
and especially νe(p) + ν̄e(k)↔ νx(p) + ν̄x(k) by forward
scattering. Such pairwise swaps preserve net flavor, but
still modify subsequent charged-current interactions.

The impact of refractive νeν̄e ↔ νxν̄x conversion has
never been studied in SN simulations because such ef-
fects seemed to arise only beyond the shock wave [19].

Yet Sawyer has long held that such conclusions result
from overly simplified assumptions about neutrino distri-
butions [20–22] and recently, other authors have followed
suit [23, 24]. The key issue is the νe and ν̄e angle dis-
tributions to be sufficiently different, in contrast to the
traditional “bulb” emission model. Another option is a
“backward” νe and ν̄e flux which is unavoidable in the
SN decoupling region and also at larger distances [25, 26].
The growth rate for “fast multi-angle instabilities” is of
the order of

Φ0 =
√

2GF (nνe−nν̄e) = 6.42 m−1 nνe−nν̄e
1031 cm−3

. (1)

Notice that we use natural units with h̄ = c = 1 where
6.42 m−1 = 1.92 × 109 s−1 = 1.27 µeV. This rate is
“fast” in that it far exceeds the vacuum oscillation fre-
quency ∆m2

atm/2E = 0.5 km−1, where we have used
∆m2

atm = 2.4 × 10−3 eV2 and E = 12.5 MeV. Fast
flavor conversion does not require neutrino masses or
mixing, except for providing seed perturbations. More-
over, energy drops out, forestalling the characteristic
energy-dependent flavor swaps found in many scenarios
of collective flavor conversion [1, 9]. More likely, some
sort of flavor equilibration by chaotic evolution of many
nonlinearly coupled modes will occur [20–22, 27–30].

We here propose a new perspective that vastly simpli-
fies both the conceptual understanding and the practical
treatment of these phenomena. The starting point is the
mean field of νeνx coherence, essentially the off-diagonal
element of the usual %(t, r,p) flavor matrix, which nor-
mally evolves purely kinematically. However, after in-
cluding νν refraction, % becomes dynamical and we can
think of the neutrino medium as supporting flavor waves
described by a wave four vector K = (Ω,K) and corre-
sponding polarization vector.

A propagating mode is a collective disturbance with
a certain frequency Ω. To fulfill the equation of motion
(EOM), Ω may be required to be complex for some K,
leading to solutions which grow or shrink exponentially
in time. Conversely, some Ω specified at the boundary



2

may require complex K and thus exponential solutions
as a function of distance. Moreover, various recently dis-
covered symmetry breaking effects [31–36] simply corre-
spond to complex K in directions other than the sym-
metry axis of the neutrino medium, and/or to differ-
ent polarizations of our flavor waves. We here focus on
fast modes because they are less familiar, yet may domi-
nate in environments where previously no conversion was
thought to occur.

Mean field of flavor coherence.—We describe the neu-
trino mean field by the usual density matrices %. For two
flavors, we write in the weak-interaction basis

% =
fνe + fνx

2
+
fνe − fνx

2

(
s S
S∗ −s

)
, (2)

where fνe and fνx are the initial occupation numbers.
The complex scalar field Sp(t, r) represents νeνx flavor
coherence for mode p, whereas the real field sp(t, r) obeys
s2
p + |Sp|2 = 1 and provides the survival probability by

1
2 (1+s). We use the “flavor isospin convention,” where ν̄
has negative energy and negative %, so the ν̄ coefficients
are −(fν̄e+fν̄x)/2 and −(fν̄e−fν̄x)/2.

The usual EOM is (∂t + v ·∇r)% = i[%,H], where we
ignore collisions [37, 38] and where the Liouville operator
accounts for free streaming. The Hamiltonian matrix is
H = M2/2E + vµΛµ

1
2σ3 +

√
2GF

∫
dΓ′ vµv′µ%

′, where σ3

is a Pauli matrix. The neutrino mass-square matrix M2

is what drives oscillations because it is not diagonal in
the weak interaction basis. The second term is the usual
matter effect, where vµΛµ = Λ0 − v · Λ, vµ = (1,v)
is the neutrino four velocity, and Λ0 =

√
2GF(ne−nē),

with Λ the corresponding current. The third term is
an integral over the neutrino phase space, extending to
negative energies to include antineutrinos.

We here study fast modes and thus dismiss M2. As
neutrinos are produced in flavor states, any % matrix be-
ginning and staying diagonal is a fixed-point solution.
Our task is to determine when this fixed point is stable
or unstable. To this end, we use |S| � 1 and observe
that to linear order s =

√
1− |S|2 = 1. Moreover, the

EOM no longer depends on E, so we only deal with angle
modes described by v. The same Sv applies to ν and ν̄,
so we only need the angle distribution of electron lepton
number (ELN) carried by neutrinos, which we express as

Gv =
√

2GF

∫ ∞
0

dE E2

2π2

[
fνe(E,v)− fν̄e(E,v)

]
. (3)

If the νx and ν̄x distributions are not equal, we must
include − [fνx(E,v)− fν̄x(E,v)]. The ELN potential is
Φ0 =

∫
dΓGv and the current is Φ =

∫
dΓGv v. The

phase-space integration is over the unit sphere:
∫
dΓ =∫

dv/4π. We may use coordinates with z along the radial
direction and angles (θ, ϕ) to express v = (vx, vy, vz) =
(sθcϕ, sθsϕ, cθ), where cθ = cos(θ) and so on.

Assuming that in our test volume the occupation num-
bers as well as the matter density are homogeneous and

stationary, the linearized EOM is

i (∂t + v ·∇r)Sv = vµ(Λ + Φ)µSv −
∫
dΓ′ vµv′µGv′Sv′ .

(4)
Here vµ(Λ+Φ)µ = Λ0+Φ0−v·(Λ+Φ) is the energy shift
due to matter and neutrinos and vµv′µ = (1−v·v′). For a

plane wave Sv(t, r) = Qv(Ω,K) e−i(Ωt−K·r), the EOM is

vµkµQv = −
∫
dΓ′ vµv′µGv′Qv′ , (5)

where k = K−(Λ+Φ) with kµ = (ω,k) and K = (Ω,K).
Notice that our ω does not denote ∆m2

atm/2E.
The dispersion relation will be for (ω,k) and depends

only on Gv. Matter enters through the constant shift
(Ω,K) → (ω,k) which means going to a rotating frame
in flavor space [18, 29, 39]. K and k have the same imag-
inary part, if any. The shift amounts to a global gauge
transformation Sp(r)→ Sp(r)ei(Λ+Φ)r. For the % matri-
ces, it is a global SU(2) gauge transformation.

Dispersion relation (DR).—Without νν interactions,
Eq. (5) implies vµkµ = 0. This purely kinematical rela-
tion means that a spatial disturbance of mode v is car-
ried by the Liouville flow, causing a local time variation
with ω = v · k. Including νν interactions, the EOM
becomes dynamical. Physically, the local time variation
“observed” by another neutrino can lead to a parametric
resonance and thus to run-away solutions.

The right hand side of Eq. (5) has the form vµaµ with
a “polarization vector” aµ = −

∫
dΓ vµGvQv, so Qv =

vµaµ/v
µkµ. Insertion on both sides of Eq. (5) yields

vµaµ = −
∫
dΓ′ vµv′µGv′ aµv′µ/k

µv′µ. Using the metric
ηµν = diag(+,−,−,−), this EOM is vµΠµνaν = 0. Here
the “polarization tensor”

Πµν = ηµν +

∫
dv

4π
Gv

vµvν

ω − v · k
(6)

contains all physical information, which derives from the
ELN angle distribution Gv. The EOM vµΠµνaν = 0
applies to any mode vµ and thus amounts to

Πµνaν = 0 . (7)

The latter has nontrivial solutions for det [Πµν(k)] = 0,
providing the DR. Once we have found solutions kµ =
(ω,k) we can identify the corresponding polarization vec-
tor aµ and the eigenfunction Qv = aµvµ/k

µvµ.
To find propagating modes with real k, we first pick a

direction k̂ and write k = k̂nω in terms of the refractive
index n. In Eq. (6) we now pull 1/ω out of the integral
and recognize that det [Πµν ] = 0 is a quartic equation for
ω as a function of n, i.e., instead of n(ω) we find four
branches ω(n). Considering k(n) = k̂nω(n), we thus
find parametric solutions in the form [ω(n),k(n)]. On
the other hand, there is no obvious elegant way to find
complex ω solutions for real k or the other way round,
without searching for roots of det [Πµν(k)] = 0.



3

Generic example.—We assume axial symmetry of Gv

and pick k in the radial direction (z). In Πµν all terms
linear in vx,y vanish, so Eq. (7) yields two equations
for (a0, az), providing Qv = (a0 − azcθ)/(ω − kzcθ)
where we have used k = (0, 0, kz). These are the bi-
modal and multi-zenith angle (MZA) polarizations [32],
which are axially symmetric. The diagonal Πµν terms
from v2

x and v2
y yield degenerate solutions for ax,y with

Qv = −(axsθcϕ+aysθsϕ)/(ω−kzcθ), the axial symmetry
breaking multi-azimuth angle (MAA) polarizations.

To be explicit, we study the simplest non-trivial case:
Two θ modes representing two zenith ranges, i.e., Gv =
G1δ(cθ − c1) +G2δ(cθ − c2). The axially symmetric po-
larizations produce a quadratic form in both ω and kz,
implying that the DRs are hyperbolas in the ω–kz–plane,
as shown in Fig. 1. The axially breaking polarizations
provide similar results.

The left panels use forward modes (0 < cos θ1,2 < 1)
as in traditional bulb emission. If νe dominate in both
modes (upper left), both ω and kz are real: No fast flavor
conversion occurs. If one mode has a ν̄e excess (G1 < 0),
the DR has a gap, providing complex ω for real kz and
the other way round as indicated by the red blob. Distur-
bances with kz in the gap grow exponentially in time. A
real ω imposed at the boundary causes exponential spa-
tial growth. These conclusions carry over to more general
G(θ), where one needs a crossing from positive to neg-
ative ELN intensities to obtain a dispersion gap which
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FIG. 1. Dispersion relations (black lines) for two θ modes.
The thick red line is Re(ω) for real kz or Re(kz) for real ω. The
width of the blob is ±Im(ω) or ±Im(kz). Left: Only outward
modes. Right: One outward and one backward mode. Top:
Both νe excess. Bottom: Forward mode ν̄e excess.

in turn enables fast flavor conversion, similar to spectral
crossings for slow modes [40–42].

One forward and one backward mode with νe excess
(upper right) produce two branches of real ω for all kz,
but an ω gap. All spatial disturbances propagate, but a
“forbidden” frequency imposed at the boundary causes
exponential spatial growth. If instead one of our two
modes has ν̄e excess (lower right), there is a gap in kz.
Wave numbers in this range imply temporal run away.

The direction of a general k can be chosen such that
it feels forward and backward modes, even if all modes
are forward in the SN frame. If Gv > 0 everywhere
(no crossing), such cases produce a DR analogous to the
upper right panel (an ω gap). The neutrino flow is a very
anisotropic medium, so dispersion strongly depends on k̂.
Moreover, some components of k may be real and only
one of them complex, producing exponential variation in
only one spatial direction for a certain ω gap.

Realistic distribution.—The flavor-dependent neutrino
angle distributions from SN simulations are not readily
available. To gain intuition, we have extracted the ELN
distributions from a Garching simulation of a 15 M�
progenitor [26, 43, 44]. Figure 2 shows a typical case
not far from the decoupling region. For larger distances,
the ELN profile is horizontally compressed near the for-
ward (cos θ = 1) direction, although backward modes
(cos θ < 0) are never empty. One key feature is the for-
ward dip due to ν̄e being more forward peaked than νe.
However, we have not found any place or time in this
model where this dip would go negative.
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FIG. 2. Electron lepton number (ELN) angle distribution Gθ
of a 15 M� SN simulation at 280 ms post bounce and a radius
37 km. We plot an ELN number density, to be converted to
a weak potential by Eq. (1). We show a mildly smoothed
approximation suitable for analytic post processing.

Figure 3 shows the DR implied by Gθ of Fig. 2 for
a radial-moving mode with k = (0, 0, kz). Without νν
interactions, the DR is ω = cθkz for any angle mode
cθ (gray-shaded region). Including νν interactions, this
region becomes a “zone of avoidance” for propagating
collective oscillations as Qv ∝ 1/(ω−cθkz) would be sin-
gular. The thick blue lines are the dispersion relations for
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FIG. 3. Dispersion relations for k = (0, 0, kz) with Gθ shown
in Fig. 2. Blue: Axially symmetric polarizations. Orange:
Two degenerate axially breaking polarizations. Dots: End of
a branch. Filled regions: Complex solutions in analogy to the
red blobs in Fig. 1, where the semi-thick solid line is Re(kz)
and the edge of the blob indicates ±Im(kz). Gray region:
Zone of avoidance for real (ω, kz).

the axially symmetric polarizations. The two degenerate
axially breaking ones (thick orange) end at the big dots
on the border of the zone of avoidance. In the frequency
gap, kz is complex. We show its real part by semi-thick
blue and orange lines ending on the horizontal axis. In
analogy to the red blobs in Fig. 1, the blue and orange
shaded regions which kiss the dispersion curves indicate
the imaginary part of kz, i.e., kz in the frequency gap
has a real part (semi-thick line) plus/minus an imaginary
part (edge of the blob).

Growth in the gap.—Any type of ELN distribution
probably occurs somewhere in NS mergers or 3D SN
models, but in our 1D model, Gv is always positive and
has no crossings. Hence, dispersion is similar to an EM
wave in plasma: For every k there is a real ω, but there
is an ω gap where the EOM requires k to be complex.

In analogy to the stability analyses for slow modes [45],
exponential spatial growth obtains if at an interface (e.g.
the neutrino sphere) a forbidden frequency is prescribed.
The latter was chosen to be stationary in the frame where
M2 is static, i.e., Ω = ω+Λ0+Φ0 = 0, and the system was
stable (real K) in this region. However, the matter den-
sity and neutrino angle distribution evolve with radius,
so a propagating wave can enter a forbidden frequency
band. Exponentially damping and growing solutions en-
sue, the latter ones quickly taking over. Beginning with
Ref. [7], such exponential growth starting at some “onset
radius” has been found in many numerical studies.

Notice the difference to EM waves entering a forbid-
den region, e.g., radio waves in the ionized upper atmo-
sphere. The plasma frequency prevents propagation and

they are reflected—they do not grow exponentially in the
ionosphere. Flavor waves obey a first-order differential
equation, probably explaining this difference.

Recently it was argued that one should not pick Ω = 0
a priori because every frequency would have some ampli-
tude at the boundary [29, 39]. In this case the system is
spatially unstable everywhere if it has a frequency gap.

Boundary conditions.—However, it is not obvious that
the picture of the flavor field being driven by an external
frequency at some “neutrino sphere” is an appropriate
description altogether. Ignoring collisions and without
a physical interface, the EOM applies on both sides of
an assumed boundary surface. The length scales for fast
flavor conversion are small, so something like the tradi-
tional bulb model is not justified in any obvious sense.
Furthermore, the inclusion of backward modes may re-
quire to specify boundary conditions in different spatial
regions. In a SN, all inward moving neutrinos come from
neutral-current scattering of the outward moving ones,
hence inward and outward flows are flavor-correlated be-
yond what is prescribed by the EOM.

The DR alone only indicates which solutions are con-
sistent with the EOM, but not which ones will actually
occur. We would be sure that the system was always
stable if the DR did not have any gaps, which however
seem to be generic. Except for quantum fluctuations or
hypothetical flavor-violating interactions [46–48], M2 is
the only source of seed perturbations. However, which
spectrum of flavor disturbances is produced and where
remains to be better understood.

Summary.—We have derived a general dispersion rela-
tion (DR) for disturbances in the mean field of νeνx co-
herence. This approach corroborates that fast run-away
solutions can indeed occur as first shown by Sawyer. We
have found that it is the local νe minus ν̄e angle distri-
bution, Gv, that drives this effect. Therefore, Gv should
be investigated in a larger class of SN models, notably
in 3D simulations exhibiting the LESA effect [49]. The
presence of “crossings” in Gv would signify k gaps in the
DR and concomitant temporal instabilities which depend
on the initial conditions of the flavor disturbances.

At present it looks like ω gaps are the most generic
dispersion form, so the spatial boundary conditions and
their time variation are needed to understand the generic
behavior of the flavor field. Eventually one may not get
around including the collision term in the EOM to see
which modes of the flavor field are actually excited.

While the DR alone does not prove that fast pairwise
flavor conversion indeed occurs, it may well be a generic
phenomenon for SN neutrinos. The impact of flavor equi-
libration in the decoupling region should be phenomeno-
logically explored. The relevant length scales are much
smaller than the resolution of SN simulations, so one any-
way needs a schematic implementation. Although the
details remain speculative, non-trivial modifications of
shock reheating may be expected.
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