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We describe a general approach to proving the impossibility of implementing a quantum channel6

by local operations and classical communication (LOCC), even with an infinite number of rounds,7

and find that this can often be demonstrated by solving a set of linear equations. The method also8

allows one to design an LOCC protocol to implement the channel whenever such a protocol exists in9

any finite number of rounds. Perhaps surprisingly, the computational expense for analyzing LOCC10

channels is not much greater than that for LOCC measurements. We apply the method to several11

examples, two of which provide numerical evidence that the set of quantum channels that are not12

LOCC is not closed and that there exist channels that can be implemented by LOCC either in one13

round or in three rounds that are on the boundary of the set of all LOCC channels.14

Although every LOCC protocol must implement a separable quantum channel, it is a very difficult15

task to determine whether or not a given channel is separable. Fortunately, prior knowledge that16

the channel is separable is not required for application of our method.17

PACS numbers: 03.65.Ta, 03.67.Ac18

Quantum information theory is concerned with the study of the transmission, storage, and manipulation19

of information when that information is encoded in the form of quantum systems. As it is impossible to20

completely isolate these systems, any description of their evolution must take into account their interaction21

with an environment, suggesting an analysis utilizing the powerful techniques available for the study of open22

quantum systems [1–4]. Interaction with the environment is then considered to introduce noise into the23

system’s evolution, and there are many important questions one may ask about the action of noisy quantum24

operations, or channels, not the least of which is to find the capacity of a noisy channel to transmit quantum25

information [5–7]. When the input to the channel is one part of an entangled state, this capacity also26

measures its ability to establish entanglement between sender and receiver [8, 9].27

For the input to be part of an entangled state, it must have first undergone an entangling evolution of its28

own. Hence, one is led to investigate the entangling capabilities of such evolutions, be they unitary or general29

quantum operations. The relatively recent recognition of the practical value of entangled states—examples30

ranging from teleportation [10] and superdense coding [11] to quantum cryptography [12–14] and quantum31

computation [15–17]—has generated considerable interest in understanding the conditions under which en-32

tanglement can be created. Thus, one may ask what characterizes a (multipartite) quantum channel’s ability33

to create and/or increase entanglement between the subsystems upon which it acts. One significant such34

characterization is that the entanglement cannot increase when the channel can be simulated by local quan-35

tum operations and classical communication (LOCC), which are the only operations that can actually be36

implemented by spatially separated parties who lack the means to bring their subsystems together in a single37

laboratory. This result provides an important connection between the study of LOCC and that of entangle-38

ment. We note that it is always possible to implement any channel by LOCC when enough entanglement39

is pre-shared between the various parties—by using teleportation [10] or by perhaps more efficient means40

[18–20]—indicating that entanglement is an important resource [21–23] under the restriction to LOCC.41

The importance of LOCC in quantum information processing has long been recognized, it playing a42

key role in teleportation [10], entanglement distillation [24, 25], one-way [26] and distributed [27] quantum43

computing, local cloning [28], quantum secret sharing [29, 30], and beyond. While many important results44

have been obtained concerning LOCC [31–46], it has nonetheless proven difficult to characterize in simple45

terms. Recently [47], we presented a method of designing LOCC protocols for quantum measurements that46

succeeds for every measurement that can be implemented by finite-round LOCC, and for which failure has47

the immediate implication that the measurement cannot be implemented by LOCC no matter how many48

rounds of communication are allowed, including when the number of rounds is infinite (see also [34, 35]49

for a different approach to designing LOCC protocols for measurements, an approach which is, in contrast,50

restricted to a finite number of rounds).51
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There are, of course, significant differences between channels and measurements. A noteworthy example52

in the context of LOCC is the finding in [46] that the set of finite-round LOCC channels has a non-empty53

interior, whereas the interior of the set of finite-round LOCC measurements is, in fact, empty [48]. It is also54

known [44] that the set of LOCC channels is not closed, even for the simplest possible case of two qubits [46],55

but the question of whether or not LOCC measurements is a closed set appears to be as yet unanswered.56

Another key difference between measurements and channels is that there are many measurements that are57

all associated with any given channel, see Eq. (3) below. Therefore, one can demonstrate that a channel is58

LOCC by showing that any one of those measurements is itself LOCC. If, on the other hand, a given channel59

is not LOCC, none of the measurements associated with it can be implemented by LOCC. This latter point60

may lead one to expect that the characterization of LOCC channels may be a far more difficult task than that61

for LOCC measurements. It turns out, however that this expectation is overly pessimistic. In the present62

paper, we show that the method of [47] for measurements is readily extended to the case of multipartite63

quantum channels, allowing one to design an LOCC protocol to implement a given channel whenever this64

is possible in a finite number of rounds, with a computational effort for the case of channels that is never65

more than a quadratic increase over that needed for measurements. Our method builds a protocol round by66

round, starting with the first one. If at any point in this process, the method finds that no measurement at67

the ‘next’ round is possible, then this implies that no LOCC protocol exists for the desired channel, even68

with an infinite number of rounds [47]. As we will see below, if no measurement is possible at the very69

first round, then the method proves LOCC-impossibility via the solution of a set of linear equations. We70

will demonstrate that solving this set of linear equations is often sufficient for proving LOCC-impossibility,71

illustrating this approach with various examples.72

The remainder of the paper is organized as follows. We begin by reviewing the Kraus representation of73

quantum channels and the concomitant unitary freedom in such representations. Following this, we give a74

more detailed explanation of what exactly LOCC means, and how it can be represented. Then, we recall75

a lemma from [47], and show how the method presented there can be fully adapted to the present case of76

quantum channels. These ideas are then used to analyze certain example channels which are, with relative77

ease, found to be impossible by LOCC. Finally, we offer our conclusions.78

Each quantum channel may be described by a set of Kraus operators {Ki}
N
i=1 [3], which indicate how that79

channel transforms the state of the quantum system upon which it acts. If that system, described by Hilbert80

space H, starts out in state ρ0, then its final state will be given by81

ρf =

N
∑

i=1

Kiρ0K
†
i , (1)

where with IH the identity operator on H,82

N
∑

i=1

K†
iKi = IH (2)

so that the channel is trace-preserving, Tr(ρf ) = Tr(ρ0). Of course as is well-known, the set of Kraus83

operators describing any given channel is far from unique. For any other set of Kraus operators, {K ′
j}

N ′

j=1,84

that describes the same channel as the original set, let N̂ = max(N,N ′) and pad the smaller of the two sets85

with additional zero operators so that the two sets have the same number of members. Then, there exists a86

unitary matrix V such that for each j = 1, · · · , N̂ ,87

K ′
j =

N̂
∑

i=1

VjiKi. (3)

Furthermore, any other set describing this channel may be expressed in this way [17].88

An LOCC protocol involves one party making a measurement, informing the other parties of her outcome,89

after which according to a pre-approved plan, the other parties know who is to measure next and what that90

measurement should be. Since each local measurement involves a number of possible outcomes, the entire91

process is commonly represented as a tree, the children of any given node representing the set of outcomes92

of the measurement made at that stage in the protocol. Consider the cumulative action of all parties up to93

a given node n in the tree, represented by Kraus operator K, which since the parties each make only local94
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measurements, must be of the product form, A ⊗ B ⊗ · · · . We will label each such node by the positive95

operator K†K, commonly referred to as a POVM element, and we will say that node n is ‘equal’ to its label96

K†K. For any such tree, the root node represents the situation present before any party has yet measured97

and will therefore always be equal to the identity operator IH = IA ⊗ IB ⊗ · · · , where Iα is the identity98

operator on the local Hilbert space Hα for each party α. At the end of any finite branch of the tree is a99

leaf node (leaf nodes being those that do not themselves have children), which since it is terminal, must be100

labeled by a POVM element associated with a Kraus representation of the desired channel. Similarly, any101

infinite branch has a sequence of nodes that approach such a POVM element in the limit. When we say that102

a finite-round LOCC protocol implements Kraus operators {Kj} this means that each leaf is proportional to103

one of the K†
jKj, with positive constant of proportionality, and the sum of all leaves proportional to K†

jKj is104

exactly K†
jKj. For infinite protocols, it means the same but in the limit as the number of rounds approaches105

infinity. Note that the class of infinite-round protocols can be divided into two distinct sub-classes [46]. The106

first subclass, which is a subset of what we will refer to as ‘LOCC’ [46], involves sequences of protocols more107

and more closely approaching a given channel simply by adding more and more rounds of communication,108

but without changing the local measurements implemented in earlier rounds. The second subclass, LOCC109

in [46], includes limits of sequences in which measurements made at the earlier rounds are changed from110

one protocol in the sequence to the next. As indicated by the notation, LOCC is the topological closure of111

LOCC, and as mentioned above when considering quantum channels, LOCC 6= LOCC [44]. We note that112

the results of the present paper apply to the entire class LOCC, including those that involve an infinite113

number of rounds, but not to LOCC.114

We will need the following lemma, proved in [47] (but reworded here to conform to the present context).115

Lemma 1. Suppose the tree L represents an LOCC protocol (finite or infinite), which implements the set116

of Kraus operators {K ′
j}. Then the POVM element E, representing the accumulated action of all parties up117

to any given node in L, is equal to a positive linear combination of the set of operators, {K ′†
j K

′
j}. That is,118

E =
∑

j cjK
′†
j K

′
j, with cj ≥ 0.119

Without loss of generality, let us assume that Alice measures first to initiate an LOCC protocol that im-120

plements quantum channel E . More specifically, assume the protocol implements any set of Kraus operators,121

{K ′
j}, that represents E . Since Alice has measured first, the other parties have as yet done nothing, which122

implies that the outcome of Alice’s initial measurement will correspond to a (multipartite) Kraus operator123

of the form A⊗ IĀ, where IĀ is the identity operator on HĀ, the Hilbert space describing all parties other124

than Alice. The associated POVM element is then E = A⊗IĀ, with A = A†A, which according to Lemma 1125

implies that with cj ≥ 0,126

A⊗ IĀ =

N̂
∑

j=1

cjK
′†
j K ′

j =

N̂
∑

i,i′=1





N̂
∑

j=1

V ∗
jicjVji′



K†
iKi′

=

N̂
∑

i,i′=1

Cii′K
†
iKi′ , (4)

and Cii′ =
∑N̂

j=1 V
∗
jicjVji′ .127

At this point it is convenient to choose a set of index pairs, S ⊆ {(i, i′)}N̂i,i′=1, such that the set of operators128

{K†
iKi′}(i,i′)∈S is linearly independent. Then with K†

jKj′ =
∑

(i,i′)∈S rii
′

jj′K
†
iKi′ for (j, j

′) 6∈ S,129

A⊗ IĀ =
∑

(i,i′)∈S



Cii′K
†
iKi′ +

∑

(j,j′) 6∈S

Cjj′r
ii′

jj′K
†
iKi′





=
∑

(i,i′)∈S

C̃ii′K
†
iKi′ , (5)

where C̃ii′ = Cii′ +
∑

(j,j′) 6∈S Cjj′r
ii′

jj′ . This condition must hold for all sets of Kraus operators {Ki} repre-130

senting E . Since Kraus representation {K ′
j} for E can also be arbitrarily chosen, we see that Eq. (5) with131
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0 ≤ A 6∝ IA (or else Alice did not actually measure) is a necessary condition for the existence of an LOCC132

protocol that implements E .133

Let {Λµ} and {Γν} be orthonormal bases of the space of operators acting on HA and HĀ, respectively,134

Tr(Λ†
µΛµ′) = δµµ′ and Tr(Γ†

νΓν′) = δνν′ , with Λ0 = IA and Γ0 = IĀ. Choose any µ and any ν 6= 0 and135

multiply Eq. (5) by Λ†
µ ⊗ Γ†

ν to obtain136

0 =
∑

(i,i′)∈S

C̃ii′Tr(
[

Λ†
µ ⊗ Γ†

ν

]

K†
iKi′) =

∑

(i,i′)∈S

C̃ii′Q
(µν)
i′i , µ = 0, · · · , d2A − 1, ν = 1, · · · , d2

Ā
− 1 (6)

where dA is the dimension of HA, dĀ is that of HĀ, and137

Q
(µν)
i′i := Tr(

[

Λ†
µ ⊗ Γ†

ν

]

K†
iKi′). (7)

The next step is to form the coefficients C̃ii′ into an |S|-dimensional column vector ~c (by, say, stacking138

each column one below the next) and also the Q
(µν)
i′i into a row vector for each µ and ν 6= 0, collecting all139

the latter row vectors into a matrix Q
A
. Then, we have from Eq. (6),140

0 = Q
A
~c, (8)

showing that any initial local measurement by Alice in an LOCC protocol exactly implementing the desired141

quantum channel E is determined by the nullspace of matrix Q
A
.1 In similar fashion, one can use this142

approach to obtain all later measurements, thus designing a full LOCC protocol for E whenever possible.143

This design approach is described in detail in [47] for the case of implementing a quantum measurement144

rather than a channel. For measurements, the set of Kraus operators is fixed and unitary V in Eq. (4) is145

equal to the identity; then the free parameters are the N̂ coefficients cj , rather than the |S| coefficients C̃ii′ .146

Thus, we see that the approach described in [47] can be directly taken over to the case of channels simply147

by increasing the dimension of the domain of matrix Q
A
from N̂ [47] to |S| ≤ N̂2, where N̂ is the number148

of Kraus operators defining the measurement (in the first case) or representing the channel (in the second149

case).150

By Eq. (2), there is always at least one solution of Eq. (8), which we will denote as ~cI corresponding to151

A = IA in Eq. (5). If this is the only solution, then Alice cannot measure first. If this is true for every party,152

then no LOCC protocol exists for the given channel.153

Let us augment Q
A
by adding the single row ~c †

I (and, hoping not to cause confusion, we continue to call154

this Q
A
). Then ~cI is no longer in the nullspace of Q

A
, and we have the following theorem.155

Theorem 2. For a given multipartite quantum channel E, if for every party α, the nullspace of Qα is empty,156

then E cannot be implemented by LOCC, even when using an infinite number of rounds.157

Note that this theorem provides a way to easily prove certain channels are not LOCC, requiring only the158

solution of a set of linear equations. Below is a list of examples for which this method provides such a proof.159

For each example, we give the ratio of the smallest eigenvalue of Q†
αQα ≥ 0 to the largest, minimized over160

parties α, denoting this ratio as λ̂.2 When λ̂ 6= 0, the nullspace of Qα is empty for all parties α, and then161

Theorem 2 shows that the given channel cannot be implemented by LOCC. If λ̂ is small, then Qα is close162

to singular, implying there is a first measurement that introduces only a small error into the protocol. For163

example, by a small change in the set of Kraus operators one could alter Qα so that it becomes singular.164

However, it should be remembered that this is just the first measurement of a protocol, so that small λ̂ does165

not by itself indicate there is a protocol that closely approximates the desired channel. In addition, even166

when λ̂ is large, it may still be that the channel lies in the set closure, LOCC (at least, we as yet have no167

argument to the contrary).168

Let us now look at the examples.169

1 Note that once the index set S and the orthonormal bases {Λµ} and {Γν} are chosen, matrix QA is completely defined by the
channel itself through the Kraus representation {Ki}. In addition, we claim that the choice of index set and bases does not
change the results of our approach. The reason why the basis choices change nothing has been discussed in footnote 4 of [47].

Choosing index set S′ instead of S, corresponds to a choice of linearly independent operators, K†
jKj′ =

∑
(i,i′)∈S T ii′

jj′
K

†
i Ki′ ,

for (j, j′) ∈ S′, where T is a full-rank matrix whose columns are indexed by (j, j′) and rows by (i, i′). This changes
Q

A
→ Q′

A
= Q

A
T , so while the nullspace of Q′

A
differs from that of Q

A
, the dimensions of the two nullspaces are identical.

Since our results depend only on this dimension, see Theorem 2, we see that our claim is justified.
2 The computational complexity of finding all eigenvalues of an n × n matrix in the large-n limit is O(n3) by Householder
reduction to tridiagonal form followed by either QR factorization or direct solution of the resulting characteristic equation
[49]. We believe this calculation is the limiting step in our procedure of checking LOCC-impossibility. See Section 4 of [50]
for our Matlab code implementing this procedure, where we use Matlab’s ‘eig’ function to find the eigenvalues, it being plenty
fast enough for the problems we have addressed here.
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1. The bipartite channel determined by Kraus operators equal to projectors onto the four maximally170

entangled Bell states [51]. We find that λ̂ = 1, implying that neither party can make a first measurement171

and showing that this channel is not LOCC.172

2. The channel defined by Kraus operators equal to the nine projectors onto the (product) domino states173

of [52], which first demonstrated nonlocality without entanglement. We find that λ̂ = 1/6 for this case,174

implying that neither party can make a first measurement and showing (the well-known result) that175

this channel is not LOCC.176

3. The channel defined by the rotated domino states [37, 52]. We find that for these channels, neither177

party can measure first, other than in the exceptional cases where at least one pair of the dominos is178

not rotated at all, in which case there exists a straightforward LOCC protocol for implementing these179

channels. As seen in Fig. 1 (see [50] for further explanation), λ̂ is nonzero, but smoothly approaches180

zero as the degree of rotation (measured here by θmin) vanishes. Thus, we see a smooth approach to the181

existence of a first local measurement, and indeed to a fully LOCC channel that can be implemented182

using three rounds of communication in this limit [50].183

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.05

0.1

0.15

0.2

θmin

λ̂

FIG. 1. Impossibility of a first measurement for rotated domino states.
184

185

4. Random unitary channels, where the Kraus operators are proportional to (randomly chosen) unitaries.186

The results in this case depend strongly on the number of random unitaries, Nu. For each number of187

parties, each set of local dimensions, each Nu, and equal a priori probabilities of the random unitaries,188

we have numerically checked 100 different sets of randomly chosen unitaries for each of the following189

cases: two qubits, three qubits, two qutrits, and a bipartite qubit-qutrit system. In all cases, we have190

found that no party can ever measure first when Nu < D, where D is the dimension of the global191

Hilbert space H, while a first measurement is not excluded for any party when Nu > D. In these192

cases, λ̂ decreases from no smaller than about 0.01 when Nu = 2 to no smaller than 3 × 10−4 when193

Nu = D − 1. When Nu > D, λ̂ is always less than about 10−16. Thus we see a sharp transition194

around Nu = D. When Nu = D, the situation is more diverse. For three qubits none of the parties195

can measure first when Nu = D = 8, λ̂ never being less than 10−4. The case Nu = D yields λ̂ ranging196

between about 10−5 to 10−9 for two qutrits and between about 10−3 to 10−8 for two qubits, showing197

that neither party can measure first for these channels, but it is sometimes possible they are close to198

channels where one or the other party can. For the qubit-qutrit case and Nu = D = 6, the party with199

the qubit can never measure first (λ̂ is never less than 10−5), but it may be possible that the party200
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holding the qutrit can (λ̂ is always less than about 10−16). This provides evidence that ‘almost’ all201

random unitary channels having small Nu are not LOCC.202

5. The two-qubit channel defined by the five Kraus operators |n〉〈πn|, where |π1〉 ∝ |0〉 (α1|0〉+ β1|1〉),203

|π2〉 ∝ |0〉 (α1|0〉 − β1|1〉), |π3〉 ∝ (α3|0〉+ β3|1〉) |0〉, |π4〉 = |1〉|1〉, and |π5〉 = (µ|0〉+ ν|1〉) |0〉. These204

operators provide the optimal (global and separable) measurement for unambiguous state discrimina-205

tion of the states given in Eq. (12) of [53]. Coefficients αj , βj , µ, ν are constrained as described in [53]206

and summarized in Section 2 of the supplementary materials [50], but these constraints leave a contin-207

uous class of example channels. It was shown in that paper that this optimal measurement cannot be208

achieved by finite-round LOCC, but it was not previously known whether or not it could be achieved209

by LOCC using an infinite number of rounds. We have generated several thousand examples with the210

coefficients chosen at random, finding that no party can measure first except in the limiting cases of211

|α1| → 0, |α1/β1| → 1, and α3 → 0, where LOCC protocols, requiring only a single round of communi-212

cation, do exist. In all other cases, λ̂ is nonzero, but approaches zero as any one of these limiting cases213

is approached (see Figs. 2 and 3 in the supplementary materials [50]). This provides evidence that214

almost all channels (also measurements) in this class are not LOCC, even with an infinite number of215

rounds, and the possibility remains that none of them are. Thus, we have a sequence of channels (also216

measurements) where no member of that sequence is LOCC, even with an infinite number of rounds,217

but the limiting channel (measurement) is one-round LOCC. This provides numerical evidence that218

the set of channels (measurements) that are not LOCC is not closed and that these one-round LOCC219

channels are on the boundary of LOCC.220

In conclusion, we have adapted the method of [47] for designing LOCC protocols implementing quantum221

measurements so that it can be used for implementation of quantum channels. We have shown that one can222

often prove LOCC-impossibility of a quantum channel by solving a set of linear equations and have provided223

several examples. These examples include a new result suggesting that the class of optimal measurements224

for unambiguous state discrimination given in [53] are all impossible by LOCC, including with an infinite225

number of rounds, and also a result suggesting that almost all random unitary channels with few unitaries226

are not LOCC. Additionally, we have obtained numerical evidence that the set of quantum channels that227

are not LOCC is not closed, and that there exist one-round and three-round LOCC channels that are on the228

boundary of the set of all LOCC channels. While our results do apply to infinite-round LOCC protocols,229

they do not apply to the closure of LOCC, and we are presently at work studying ways to include the entire230

boundary of LOCC in the analysis.231

Finally, we would like to point out that our approach to LOCC-impossibility of quantum channels can232

be recast in the form of semidefinite programs [54], see Section 3 in [50]. This and other extensions of the233

results presented here will be discussed elsewhere.234
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