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Randomly connected networks of excitatory and inhibitory spiking neurons provide a parsimo-
nious model of neural variability, but are notoriously unreliable for performing computations. We
show that this difficulty is overcome by incorporating the well-documented dependence of connec-
tion probability on distance. Spatially extended spiking networks exhibit symmetry-breaking bifur-
cations and generate spatiotemporal patterns that can be trained to perform dynamical computations
under a reservoir computing framework.

Biological neuronal networks exhibit irregular and
asynchronous activity [1, 2] that is often modeled us-
ing randomly connected networks of excitatory and
inhibitory spiking neurons. In these models, an
approximate balance between excitation and inhibi-
tion combines with random connectivity to produce
asynchronous-irregular spiking activity similar to that
observed in experimental recordings [3–6].

Despite their ability to explain the genesis of neu-
ral variability, asynchronous-irregular spiking network
models have a critical shortcoming: Their microscopic
dynamics – at the level of spike times – are intricate and
nonlinear, but largely unreliable [3, 4, 7, 8]. Their macro-
scopic dynamics – at the level of firing rates – are reli-
able, but primarily track network input [3, 4, 6, 9, 10].
Biological neural networks must generate reliable, intri-
cate responses to simple sensory inputs, for example to
produce motor output [11, 12]. This raises the question
of how neural circuits reliably produce intricate firing
rate dynamics for dynamical computations.

In this letter, we show that the limited dynamical com-
plexity of firing rates in asynchronous-irregular spik-
ing networks is overcome by incorporating the widely
reported dependence of connection probability on dis-
tance [13–16]. Spiking networks with a spatial topology
can undergo symmetry-breaking Turing-Hopf bifurca-
tions [17, 18] to generate intricate spatiotemporal dy-
namics that can be trained to perform computations.

Results Following previous work [9], we consider a
recurrent neural network with 4 × 104 excitatory (e) and
104 inhibitory (i) model neurons arranged uniformly on
a square-shaped domain, Γ = [0, 1]× [0, 1], with peri-
odic boundaries, i.e. a torus. The synaptic input current
to neuron j in population a = e, i is given by

Ia
j (t) =

Ne

∑
k=1

Jae
jk ∑

n

δ(t − te
nk) +

Ni

∑
k=1

Jai
jk ∑

n

δ(t − ti
nk) + Fa

j (t)

where tb
nk is the nth spike of neuron k in population

b = e, i. Spikes are determined by a leaky integrate-
and-fire dynamic [43]. To model the widely observed
distance-dependence of connection probability [13–16],
the synaptic weight from a neuron at coordinates y ∈ Γ

in population b to a neuron at x ∈ Γ in population a is
chosen randomly according to

Jab
jk =

{
jab with prob. pab(x − y)

0 otherwise
,

where pab(u) = pabG(u;σb) and G(u;σb) is a two-
dimensional wrapped Gaussian with width σb [9].

We first simulated a network in which external in-
puts were constant across space and time and inhibitory
projections were more localized than excitatory projec-
tions (Fig. 1a). Even though the model is determin-
istic, spiking activity was irregular and asynchronous
with no coherent spatial patterning (Fig. 1b, Supplemen-
tary Figures 1,2 and Supplementary Animation). This
spike-timing variability is driven by chaos-like dynam-
ics [3, 4, 7–9].

Despite the complexity of spike-timing dynamics, fir-
ing rates are amenable to mean-field analysis under a
diffusion approximation [9]. The mean input, ~µ(x) =
[µe(x) µi(x)]

T, to e and i neurons near x ∈ Γ is

~µ(x) =
∫∫

Γ
W(u)~r(x − u)du + ~F(x)

where~r(x) = [re(x) ri(x)]
T is the average firing rate and

~F(x) the feedforward input to neurons near x ∈ Γ . The
matrix kernel W(u) captures synaptic divergence and
similarly for the input variance, v(x) =

∫∫
U(u)~r(x −

u)du [44]. The mapping from input statistics to rates,
~r = φ(~µ,~v), is computed using a Fokker-Planck for-
malism so fixed point rates can be computed numeri-

cally [19–22]. When ~F(x) = ~F is spatially uniform, so
are fixed point rates [9].

To estimate local rates from simulations, we parti-
tioned the network into 100 squares, then averaged and
low-pass filtered the spike trains of the 400 excitatory
neurons in each square (Fig. 1a). These local rate read-
outs closely matched the fixed point rates computed
numerically from the diffusion approximation (Fig. 1c)
and fluctuations in the rates were consistent with asyn-
chronous, Poisson-like spike timing variability [45].

Broad lateral inhibition is known to induce spatial
pattern formation [9, 23–27]. We next modified the net-
work so that inhibitory projections were broader than
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FIG. 1: Intrinsic dynamics in a spatially extended spiking
network. a) Schematic of spatially extended spiking net-
work model. Excitatory and inhibitory neurons arranged on
a square project randomly to one another. Lateral excitatory
projections (blue) are are longer on average than lateral in-
hibitory projections (red; σe = 0.1, σi = 0.05, Fe(t) = 3 V/s,

Fi(t) = 2.3 V/s). Each local rate readout (black) is computed
by averaging the activity of all excitatory neurons within a
square patch then low-pass filtering with a Gaussian kernel
(σ = 5 ms). b) Raster plot snapshots over 5 ms time windows
starting at t = 100 and 200 ms. c) Five randomly chosen local
rate readouts. Dashed black line shows numerically computed
fixed point rate. d-f) Same as a-c, but inhibitory projections are
broader than excitatory (σe = 0.05, σi = 0.1). See Supplemen-
tal Animation for animated raster plots.

excitatory projections (Fig. 1d). This produced a dra-
matic change in the spiking activity, with spatially uni-
form activity giving way to intricate, asymmetric spa-
tiotemporal activity patterns (Fig. 1e and Supplemen-
tary Animation), despite the spatial symmetry of con-
nection probabilities in the network. These spatiotem-
poral patterns were reflected in the local rate readouts
by irregular high-amplitude fluctuations (Fig. 1f). De-
spite their differences, both networks produced asyn-
chronous, irregular spike trains with an approximate
balance between excitation and inhibition [46], though
previous work suggests that the network would not
maintain balance as network size diverges [9].

The network with broad inhibition and the network
with local inhibition share the same spatially uniform
fixed point under the diffusion approximation, but rates
strongly deviated from this fixed point when inhibition
was broader. We conjectured that the fixed point was
stable for the simulation with local inhibition and un-
stable when inhibition was broader.

Spatially extended neural networks are often de-
scribed using integro-differential equations of the form

τr∂~r/∂t = −~r +φ(~µ,~v) (1)

or of a similar form. As in previous work [9], this
approach predicted stability of uniform firing rates for
the network with broad inhibition, despite the pat-

terns observed in simulations [47]. We conjectured
that firing rate dynamics observed when inhibition was
broad arose in part from a resonance in neurons’ mem-
brane and spiking dynamics [28] that is not captured by
Eq. (1). To account for this resonance, we generalized the
stability analysis from recent work [29] to spatial net-
works. Linear response theory gives an integral equa-
tion for the dynamics of a perturbation from the fixed
point [48],

δ~r(x, t) =
∫∫

Γ

∫
∞

0
A(τ)W(u)δ~r(x − u, t − τ)dτdu

+
∫∫

Γ

∫
∞

0
B(τ)U(u)δ~r(x − u, t − τ)dτdu

(2)

as schematicized in Fig. 2a. The matrix kernels, A(τ)
and B(τ), quantify excitatory and inhibitory neurons’
linear response to perturbations in their input mean and
variance [49]. Eq. (2) can capture an arbitrary linear de-
pendence of firing rates on their history, which is gener-
ally not possible in a finite system of integro-differential
equations like Eq. (1). Transitioning to the temporal
Laplace and spatial Fourier domains in Eq. (2) gives the
Evans function [30]

det
[

Â(λ)W̃(n) + B̂(λ)Ũ(n)− Id
]
= 0 (3)

where Id is the 2 × 2 identity matrix, W̃(n) and Ũ(n)

are Fourier coefficients of W(u) and U(u), and Â(λ) and

B̂(λ) are matrices of susceptibility functions [50], which
can be computed under the diffusion approximation us-
ing a Fokker-Planck formalism [20–22, 31]. Solutions, λ,
to Eq. (3) are eigenvalues of the rate dynamics and the
associated Fourier modes, n, are eigenmodes.

Numerical computation of the eigenvalues confirms
that the uniform fixed point rates are stable for the net-
work with local inhibition (Fig. 2b) and unstable for the
network with broad inhibition (Fig. 2c). The eigenvalues
with positive real part are complex (Fig. 2c) and are asso-
ciated with non-uniform eigenmodes (n 6= 0), implying
a Turing-Hopf bifurcation that produces spatially coher-
ent, time-varying patterns [17, 18]. Varying the width of
inhibition shows that eigenvalues with positive real part
emerge once inhibition is about twice as broad as excita-
tion, coinciding with the emergence of high-amplitude
firing rate variability in simulations (Fig. 2d, compare
green and purple). Stability can also be modulated by
the strength of external input to inhibitory neurons [51],
showing that the network’s dynamical state can be con-
trolled by input.

So far, we have considered purely spontaneous rate
dynamics. We next added a time-varying external input
shared by all neurons (Fig. 3a). For the stable network,
local rates approximately tracked the shared input with
the addition of irregular fluctuations (Fig. 3b), consis-
tent with Poisson-like spike-timing variability [52]. Ap-
plying principal component (PC) analysis to the local
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FIG. 2: Stability of spatially extended spiking networks. a) Schematic of stability analysis. A perturbation applied to the firing
rates (dashed lines, blue for excitatory and red for inhibitory) is filtered spatially by synaptic divergence (left boxes, showing
connection probability as a function of distance) to determine perturbations of synaptic currents (solid lines), which are filtered
temporally by neurons (right boxes, showing linear response kernels). b) When inhibition is more local than excitation (as in
Fig. 1a-c), all eigenvalues have negative real parts. c) Same as (b), except for broad inhibition (as in Fig. 1d-f). Some eigenvalues
have positive real part (insert). d) Maximum real part of the eigenvalues (green) and the average temporal variance of the firing

rate readouts (purple; units Hz2) as a function of the relative width of inhibitory projections (σi/σe).
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FIG. 3: Firing rate response to global input. a) A spatially
uniform sinusoidal input was provided to all neurons in the

network (Fe(t) = 3 + 1.5 sin(2π t), Fi(t) = 2.3 + 1.5 sin(2π t)).
b) Five randomly chosen firing rate readouts (colored curves)
track the input (black curve) with Poisson-like variability. All
curves normalized by subtracting their mean and dividing by
the standard deviation. c) Percent variance in the 100 firing
rate readouts explained by the first ten principal component
projections. d,e) Same as b and c, but for the unstable network.
f-j) Same as a-e except that firing rates are read out randomly
and globally from the network.

rates revealed that the majority of firing rate variability
is captured by the first PC projection (Fig. 3c), represent-
ing the variability inherited from the one-dimensional
external input. The remaining variability was spread
among higher PC projections, representing spatially un-
structured variability.

The unstable network exhibited a starkly different re-
sponse to the external input. While local rates were af-

fected by the external input, they did not reliably track
it (Fig. 3d). The input evoked a high-dimensional re-
sponse, with variability distributed across several PC
projections (Fig. 3e). These results show that the unsta-
ble network generates high-dimensional firing rate dy-
namics in response to a one-dimensional input, while
the stable network simply tracks the input with Poisson-
like spike timing variability.

While local rate readouts of the unstable network did
not track the input, random global readouts from the
same network do track input. We computed firing
rate readouts generated from 400 excitatory neurons se-
lected randomly from the entire network (Fig. 3f), in-
stead of locally. These random readouts from both the
stable and unstable networks reliably tracked external
input (Fig. 3g-j). This finding can be understood by
noting that the random readouts estimate the network-
averaged rates. Eq. (3) is identical for the stable and un-
stable networks at the uniform eigenmode, n = 0, so
the networks have the same eigenvalues at that mode.
Hence, the global average firing rate exhibits similar dy-
namics in both networks.

For the rate dynamics generated by the unstable net-
work to perform reliable computations, the response of
the network should be consistent across repeated pre-
sentations of the same input. We found that the transfor-
mation of spatially uniform input considered in Fig. 3d,e
was not reliable: While the first PC projection reliably
tracked the input, other components were highly unre-
liable from trial to trial (Fig. 4a,b). We conjectured that
this unreliability is due to the spatial symmetry of the
network: Since the activity patterns generated by the
unstable network arise through a symmetry-breaking
dynamic, there are numerous firing rate patterns that
are equally likely to be evoked each time the input is
presented. As a result, the evoked response depends on
small differences in the network state when the input
arrives.
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FIG. 4: Reliable computations require heterogeneous input.
a) Schematic. Same as Fig. 3a except the input was repeated
for 100 consecutive trials and multiplied by fixed, location-
dependent weights. Readouts were multiplied by output
weights that were trained to produce a target output. b) Over-
laid plots of the first five PC projections of untrained readouts
(uniform readout weights) over ten randomly selected trials
when inputs were spatially uniform (same model as Fig. 3d).
c) Same as (b) with spatially heterogeneous input weights. d)
Trained output from last ten trials with uniform (blue) and het-
erogeneous (red) input weights, compared to target (dashed
black). e) Mean-squared error of readouts.

We therefore considered an input that projects to
the network with weights that vary across space [53]
(Fig. 4a,c). This modification had a striking effect on
the network response. Unlike the response to spatially
uniform input, the response to spatially heterogeneous
input was highly reliable from one presentation of the
stimulus to another (Fig. 4c).

We next asked whether the unstable network could
be trained to implement dynamical computations using
the local rate readouts as the “reservoir” in a reservoir
computing framework. Local rate readouts were lin-
early combined to produce an output time series. Read-
out weights were trained using a recursive least-squares
algorithm [32] that iteratively updates weights to mold
the output to a target time-series [54] (Fig. 4a).

When this algorithm was applied to firing rates pro-
duced by spatially uniform inputs (from Fig. 4b), the
outputs did not produce the target time series (Fig. 4d,e,
blue curves), due to the unreliability of the network
response. When the same algorithm was applied to
the rates produced by spatially heterogeneous inputs
(from Fig. 4c), the outputs closely matched the target
(Fig. 4d,e, red curves). Further simulations show that
the network can learn a variety of target outputs from
a variety of inputs and that a slow adaptation current
improves the networks’ computational capabilities [55].

Discussion There is an extensive literature on spa-
tially extended neural fields [23–25] and the dynamics
of spiking neuron models [33, 34], but these topics are

rarely combined. Previous studies found spatiotempo-
ral dynamics in spiking networks with synaptic kinetics
or delays [26, 35, 36]. Since the resonance for a Turing-
Hopf bifurcation arises primarily from synaptic dynam-
ics in these models, their stability is captured by differ-
ential neural field equations. The Turing-Hopf bifurca-
tion observed here and in previous work [9] arises from
the resonance of spiking neurons, which is not captured
by differential neural field equations. Spatial dynam-
ics arising from the resonance of neurons are rendered
mathematically tractable by extending linear response
techniques developed for homogeneous networks [29].
This approach is applicable to the growing class of neu-
ron models for which the linear response function can
be computed [20–22].

A few studies have implemented reservoir computing
with spiking networks. Maass et al. [37] used a spatially
extended spiking network for reservoir computing, but
did not explain the role of spatial topology, which we
have clarified. More recent studies [38, 39] showed that
precisely tuning a sub-network of slow synapses of-
fline can produce intricate rate dynamics in spiking net-
works. One of those studies [39], implemented reser-
voir computing with a spiking network. In the other
study [38] this was only done for a rate network version
of the model. It remains to be shown how this precise
tuning of synapses could be achieved biologically, but
inhibitory plasticity is one possibility [40].

Ostojic [41] showed that spiking networks can pro-
duce high-dimensional rate dynamics when synapses
are strong, analogous to rate networks [42], but the re-
liability of these dynamics and their computational ca-
pabilities were not explored. The combination of strong
coupling with spatial network topology is a promising
direction for future study.

Distance-dependent connectivity is ubiquitous in the
brain [13–16]. We showed that this spatial topology
imparts spiking neural networks with the ability to
perform dynamical computations (Fig. 4) while main-
taining the ability to accurately track network input
(Fig. 3i,j). Hence, spatial network architecture provides
a critical link between biological realism and computa-
tional capability in recurrent neural network models.

Spatially extended networks are often modeled with
integro-differential equations that do not capture the
history-dependence of rate dynamics. We showed that
this shortcoming is overcome using linear response the-
ory to replace the integro-differential equation, (1), with
an integral equation, (2). This approach has applications
in any stochastic system with spatially and temporally
nonlocal interactions such as models of social networks,
population dynamics and epidemiology.

We thank Ashok Litwin-Kumar, Bard Ermentrout and
Brent Doiron for helpful conversations. This work was
supported by NSF grant DMS-1517828.
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