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The amplitude of fluctuation-induced patterns might be expected to be proportional to the
strength of the driving noise, suggesting that such patterns would be difficult to observe in na-
ture. Here, we show that a large class of spatially-extended dynamical systems driven by intrinsic
noise can exhibit giant amplification, yielding patterns whose amplitude is comparable to that of
deterministic Turing instabilities. The giant amplification results from the interplay between noise
and nonorthogonal eigenvectors of the linear stability matrix, yielding transients that grow with
time, and which, when driven by the ever-present intrinsic noise, lead to persistent large ampli-
tude patterns. This mechanism shows that fluctuation-induced Turing patterns are observable, and
are neither strongly limited by the amplitude of demographic stochasticity nor by the value of the
diffusion coefficients.

PACS numbers: 05.40.Ca, 87.10.Mn, 87.23.Cc, 02.50.Ey, 87.18.Hf

Since the seminal paper of Turing [1], it has been
recognized that pattern forming dynamical instabilities
could potentially underlie various examples of biological
pattern formation and development [2, 3]. The Turing
mechanism has two major assumptions: first, that two
chemical species behave as an activator-inhibitor system
(but see a recent extension [4]), and secondly, that the
spatial diffusion constant of the inhibitor is greater than
that of the activator, typically by two orders of magni-
tude or more [5, 6]. However, this second condition is
not generally present in experimental observations [7, 8].
The widely-held conclusion is that biological patterns re-
flect gene expression and the interplay of developmental
processes, so that the Turing mechanism itself is not gen-
erally operative [9].

This conclusion relies upon a third assumption of Tur-
ing patterns: that they are deterministic. However, many
biological systems exhibit strong fluctuations due to de-
mographic stochasticity (or small number fluctuations),
arising from (e.g.) finite population size (ecology) or
copy number (gene expression) [10, 11], and these fluctu-
ations could potentially couple to the underlying pattern-
forming instabilities. Detailed analysis shows that the
length scale of fluctuation-induced patterns is set by the
same condition as in the deterministic Turing analysis,
but remarkably the pattern exists over a wide range of
parameter values, even where the diffusion constants of
activator and inhibitor are of similar magnitudes [5, 12–
17]. These fluctuation-induced or stochastic patterns
arise physically because, even though the uniform un-
patterned state is linearly stable, the demographic fluc-
tuations are constantly pushing the system slightly away
from its stable fixed point; if the resulting small am-
plitude dynamics is dominated by an eigenvalue with a
nonzero wavelength, then a spatial pattern can arise.

Unfortunately, this mechanism suggests that the am-
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FIG. 1. (Color online) Turing-like pattern with large
amplitude and comparable diffusivities. (right panel)
Stochastic simulations [19] of a two-species model (8) with
diffusivities δU = 3.9, δV = 3.4 δU and system size Ω = 104.
Patterns are noise-induced as they arise from a stable homo-
geneous state u∗, i.e., the eigenvalues λ plotted against the
wavelength k are negative (left panel). However, the pattern
amplitude results of the order of one (right bar). Other pa-
rameters: a = 3, b = 5.8, c = e = 1.

plitude of fluctuation-induced patterns would be set by
Ω−1/2, where Ω indicates the total number of molecules
within a correlation volume of the system, i.e. the spa-
tial patch within which the system can be considered to
be well mixed [12, 13]. Thus in situations where Ω� 1,
fluctuation-induced patterns would have a very small am-
plitude compared to deterministic Turing patterns, and
so might not be observable nor relevant to biological and
ecological pattern formation [18].

The purpose of this Letter is to show that fluctuation-
induced Turing patterns can in fact be readily observed,
even when the noise is very small and the ratio of diffu-
sion constants is close to one. The new ingredient to the
theory uncovered here is the presence of giant amplifica-
tion, due to an interplay between demographic stochas-
ticity and nonorthogonality of the eigenvectors of the lin-
ear stability operator about the uniform stable steady
state. In the related problem of noise-induced popula-
tion cycles in predator-prey systems, amplification arises
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due to a resonance of the noise with a complex eigen-
value arising from the linearized stability about the time-
independent state [20]. In fluctuation-induced stationary
Turing patterns, this mechanism cannot be relevant, be-
cause the eigenvalues are real, not complex, and so there
can be no resonant amplification [12, 13]. Our analyti-
cal theory shows that giant amplification occurs in a wide
class of fluctuation-induced pattern-forming systems, and
is a source of amplification distinct from the population
size dependent resonance that was already identified to
arise in spatially-uniform quasicycles [20].

An example of our key result described below is shown
in Fig. 1: stochastic simulations of the generic pattern-
forming model of Ridolfi et al. [21], performed on a linear
chain of 102 spatial cells, each cell with a system size of
Ω = 104. Patterns are noise-induced as they arise from
a stable homogeneous state (left panel), but despite the
factor Ω−1/2 = 10−2 the resulting amplitude is of order
unity.

This giant amplification is due to the counterintuitive
fact that the dynamics following a small displacement
from a stable fixed point need not relax back to the fixed
point monotonically: there can be an initial transient
amplification if the linear stability matrix is nonnormal:
that is, it does not admit an orthogonal set of eigenvec-
tors (Fig. 2). Nonnormality has been thoroughly inves-
tigated at a deterministic level in fluid dynamics [22–
24], and in ecology [25, 26], and is a common feature of
pattern-forming systems [21, 27, 28]. The specific con-
tribution of the present paper is to systematically ana-
lyze the behavior of nonnormal systems in the presence
of intrinsic noise. Numerical results of shear flow tur-
bulence [29] indicate that nonnormality can increase the
variance of stochastic forcing in well-mixed systems, yet
an analytical treatment is still missing. Our work treats
the role of nonnormality in fluctuation-induced spatial
patterns, and shows that its widespread occurrence sug-
gests a new way in which fluctuation-induced Turing pat-
terns are amplified and thus potentially play a wider role
in biological and ecological pattern formation than pre-
viously recognized.

Nonnormality in stochastic dynamics:- We begin by
quantifying the degree of amplification in a well-mixed
stochastic system. Consider the linear stochastic differ-
ential equation for an m-component state vector ~y:

~̇y = A ~y + σ ~η(t), (1)

where the components of ~η, are normalized Gaussian
white noises and the model-dependent matrix A has neg-
ative real eigenvalues, λi (i = 1, . . . ,m). Therefore, the
fixed point ~y0 = 0 is stable. The coefficient σ repre-
sents the strength of the fluctuations and scales with
the system size Ω−1/2 in the case of demographic noise.
Equation (1) is the prototypical linearization of stochas-
tic dynamics near a stable fixed point, and we analyze the

FIG. 2. (Color online) Stable linear systems can am-
plify perturbations [25]. Dynamics of the Euclidean norm

‖~y‖ obtained by solving ~̇y = Ai~y. Reactive systems exhibit
transient amplification before relaxing to fixed point (blue
lines), in contrast with conventional response of stable sys-
tems (yellow lines). Matrices A1 and A2 (respectively A3 and
A4) have same real (respectively complex conjugate) eigen-
values.

mean squared displacement from the fixed point,
〈
‖~y‖2

〉
,

where ‖~y‖ =
√
~yT~y, is the Euclidean norm.

Since all the eigenvalues of A are negative, under the
deterministic part of Eq. (1), all the components of ~y
decay exponentially to zero along the eigenvectors of A,
with decay time scales τi = λ−1i . In contrast, the noise
term provides stochastic agitation with a strength pro-
portional to σ. One might intuitively expect that an up-

per bound for
〈
‖~y‖2

〉
could be found by replacing all the

eigenvalues by the eigenvalues corresponding to the slow-
est decaying mode, λ = max{λi}. Therefore, the norm of

~yu with the dynamics ~̇yu = λ~yu + σ ~η(t), should provide
an upper bound for ‖~y‖. The mean squared norm of ~yu

is readily given by
〈
‖~yu‖2

〉
= mλ−1σ2/2.

However, this upper bound is only valid when the ma-
trix A is normal, i.e. it has an orthogonal set of eigen-
vectors [29]. This can be understood by analyzing the
behavior of Eq. (1) in the deterministic limit (σ = 0).
Although the asymptotic decay rate of ‖~y‖ is set by the
eigenvalues of A, the instantaneous response is given by
the eigenvalues of H = (A + AT )/2, the Hermitian part
of A [25]. If A is nonnormal, then the short-time dy-
namics of ‖~y‖ cannot be predicted by the eigenvalues of
A. Remarkably, H can admit positive eigenvalues even
though A possesses all negative eigenvalues, in which case
‖~y‖ can experience a transient growth, for suitable ini-
tial conditions, before it starts decaying (Fig. 2). This
mechanism, sometimes termed as reactivity [25], occurs
because the transformation that takes ~y to the eigenba-
sis of A is not unitary if the eigenvectors of A are not
orthogonal, and thus does not preserve the norm of ~y.
Clearly, if the stable matrix amplifies perturbations, the
previous bound cannot hold.

In the presence of noise, the transient amplification in
the deterministic part of Eq. (1) has a lasting effect on the
steady state amplitude of the stochastic dynamics. We
demonstrate this by computing the mean squared norm
for Eq. (1) (see the detailed derivation in the Supplemen-
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FIG. 3. (Color online) Transient amplification is
caused by nonorthogonal eigenvectors and a separa-
tion of timescales. The stable fixed point is subject to the
perturbation ~y(0). Because of the separation of timescales,
the deterministic trajectory (blue arrowed line) is initially
parallel to the fast eigenvector before relaxing to the slow
manifold. From A to B, the trajectory has magnitude greater
than ||~y0||.

tal Material (SM) [30]):〈
‖~y‖2

〉
= −σ

2

2
H(A) tr

(
A−1

)
, (2)

where tr stands for the trace function and we define H
as the nonnormality index. The term tr

(
A−1

)
is the

conventional term that accounts for the matrix stability:
the more stable the matrix, the smaller the mean squared
norm of ~y due to stochastic forcing. In contrast, the non-
normality index is a real number always H ≥ 1, and is
equal to one if and only if the matrix A admits a basis of
orthogonal eigenvectors. This is the term that accounts
for amplification due to the nonnormality of matrix A,
and indeed, the further A is from normal, the larger is
the index H. We can obtain intuition about the nonnor-
mality index in the case of a two-dimensional matrix A,
where the nonnormality index H simplifies to the follow-
ing simple expression, where cot θ is the cotangent of the
angle between the two eigenvectors (see SM for derivation
and general formulae):

H = 1 + cot2(θ)

(
λ1 − λ2
λ1 + λ2

)2

. (3)

This expression gives us quantitative understanding
about how transient amplification occurs (Fig. 3). Two
ingredients are necessary: nonorthogonal eigenvectors
and a separation of time scales given by eigenvalues of
different magnitudes. If the system is not subject to
noise, suitable initial conditions are also required (e.g. the
blue vector in Fig. 3). Because of the separation of time
scales, the component of ~y along the eigenvector associ-
ated with the faster eigenvalue decays quickly, whereas
in the slow direction the dynamics is approximately con-
stant. However, because of nonorthogonality, the norm
of ~y instantaneously increases as ~y moves along the fast
eigenvector, until the slow manifold starts attracting the
trajectory back to fixed point.

Nonnormality in spatially-extended pattern formation:-
We now analyze spatially-extended, diffusively-coupled

pattern-forming systems driven by noise. Specifically, we
consider the generic equation

∂~q

∂t
= ~f(~q) + D∇2~q + σ~ξ(~x, t), (4)

where ~x is a space variable, the vector ~q = (q1, q2), the
diffusion matrix D = diag(D1, D2), and ξi’s, the com-

ponents of ~ξ(~x, t) are normalized δ-correlated Gaussian

white noises. Also, we assume that ~f(~q) has a stable
fixed point ~q ∗, and all of the eigenvalues of the linear
stability or Jacobian matrix J = ∇~qf(~q)|~q ∗ have nega-
tive real part.

We first show that in the presence of noise, system (4)
exhibits patterns in a parameter regime where the fixed
point ~q ∗ is stable. The stability of ~q∗ can be inspected
by defining the deviation ~p = ~q− ~q ∗ and linearizing near
~q ∗, yielding

∂~p

∂t
= J~p+ D∇2~p+ σ~ξ(~x, t). (5)

The spatial degrees of freedom can be diagonalized by a
Fourier transform (~x 7→ ~k), resulting in

d~p~k
dt

= K~p~k + σ~ξ(~k, t), K = J − k2D. (6)

Equation (6) is a complex version of Eq. (1).

We start by reviewing the stability of the deterministic
part of Eq. (5). If D1 = D2, matrix D is a multiple of the
identity, and the eigenvalues of K will be the eigenval-
ues of J shifted by −k2D for each ~k, resulting in a more
stable operator. However, in the case that the diffusion
rates are sufficiently different, the largest eigenvalue of K
can have a nonmonotonic behavior as a function of k2,
and in some cases have positive eigenvalues for a small
range of ~k peaked around some nonzero value ~k0. In this
case, the modes near ~k0 will grow leading to the forma-
tion of deterministic Turing patterns [1]. Therefore, the
formation of deterministic Turing patterns is dependent
on a large separation of the diffusion constants [6–8].

In contrast, consider an intermediate scenario with dif-
fusion constants different enough so that they can cause
a nonmonotonic behavior for the largest eigenvalue of K
as a function of k2 peaked around some value ~k0, but
not enough for the largest eigenvalue to be positive at ~k0
(left panel of Fig. 1). In this case, all the ~k modes decay

quickly to zero, but the modes with ~k ∼ ~k0 decay slower
than the others, causing a transient pattern. In the pres-
ence of the noise term ~ξ(~k, t) in Eq. (6), while the modes
with smaller eigenvalues decay quickly to zero, the slow
modes drift away from the fixed point under the influence
of the noise. The drift of the ~k modes near ~k0 produces
persistent steady-state fluctuation-induced patterns with
well-defined length-scales [12, 13]. While the stochastic
Turing patterns have a less stringent requirement than
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the deterministic Turing patterns for the ratio of the dif-
fusion constants, their amplitude is limited to the ampli-
tude of the drift under the noise suppressed by the slow
deterministic decay. As discussed in the previous section,
the mean squared amplitude is of order λ−1σ2, unless we
can show that the system is nonnormal.

We now show that in order for a system described by
Eq. (4) to produce stochastic patterns, it is necessary for
the matrix J in Eq. (5) to be nonnormal. The real part
of the largest eigenvalue of a normal matrix is equal to
that of its hermitian part. Therefore, we can measure
how far from normal the matrix J is by finding a lower
bound on the difference between the largest eigenvalue of
H = (J +JT )/2 and that of matrix J (the proof of this
inequality is given in SM):

λ1(H)−<(λ1(J)) ≥ δ + k20Dmin, (7)

where δ = <(λ1(K(~k0)))−<(λ1(J)) > 0, ~k0 is the wave
vectors at which the real part of the largest eigenvalue
peaks, and Dmin is smallest of the diffusion constants.

Since the nonnormality of J should be independent of
the diffusion constants, this lower bound can be extended
to the supremum of the right hand side of the inequality
(7) over all the matrices D that produce spatial patterns

and their corresponding ~k0. In particular, if a system
admits deterministic Turing patterns for some set of dif-
fusion constants, this inequality implies that the matrix
J would be reactive (i.e. λ1(H) ≥ 0. this special case
was previously proven by Neubert et al. [27]). In this
case, if experimentally measured values of diffusion con-
stants do not fall within the Turing pattern regime, the
system is still reactive and capable of exhibiting amplified
stochastic patterns.

A worked-out example :- Finally, we apply our theory to
a concrete model that is representative of a large class
of systems. The model is given by Eq. (4) with two

species U and V with densities ~q = (u, v), and ~f(u, v) =(
u(auv − e), v(b− cu2v)

)
, with a, b, c, e > 0 [21]. The

corresponding individual-level model is defined by con-
sidering the following reactions that occur on a dis-
cretized m-dimensional space with Lm lattice sites,

2Ui + Vi
a−→ 3Ui + Vi, Vi

b−→ 2Vi,

Ui
e−→ ∅, 2Vi + 2Ui

c−→ Vi + 2Ui,

Ui
δU−−→ Uj , Vi

δV−−→ Vj , j ∈ 〈i〉

(8)

where Ui and Vi are the species U and V on the site i for
i = 1 . . . Lm and 〈i〉 is the set of sites neighboring i. The
state of the system is specified by the concentration vec-
tors ~qi ≡ (ui, vi) ≡ (Ui, Vi)/Ω, where Ω is the volume of
each site. The diffusion rates δu and δv are related to the
diffusion constants by (δu, δv) = (DU , DV )/Ω2/m. The
discrete-space version of Eqs. (4), (5) and (6) are derived
by expanding in powers of Ω−1/2 the master equation

FIG. 4. (Color online) Stochasticity allows pattern for-
mation for similar diffusivities. (left) Phase diagram of
model (8) showing that the pattern forming behavior of this
model depends only on the ratios b/e and DV /DU (see SM
for analytical expression for the boundaries). (right) Semi-log
plot of nonnormality index for the point P as a function of
a/c2/3. Black markers are amplifications measured in simula-
tions.

corresponding to scheme (8) (see the SM for the deriva-
tions).

The pattern forming behavior of the model described
by (8) only depends on the ratio of the diffusion con-
stants DV /DU and the ratio of the reaction rates of the
two linear reactions b/e. The left panel of Fig. 4 shows
the regime of parameters in which the system exhibits ei-
ther stochastic or deterministic Turing patterns [31]. As
expected, deterministic patterns emerge only when the
ratio DV /DU of diffusion constants is very large (above
the blue line in Fig. 4 which grows rapidly outside of
the figure), while the requirement on this ratio for the
stochastic patterns is drastically reduced. In the absence
of the nonnormality effect, one would expect that only
stochastic patterns with parameters very close to the de-
terministic regime would be observed, since far from this
regime, the amplitude of the patterns would be too small
to detect.

However, since for all b/e > 1, there is a DV /DU above
which the system exhibits deterministic Turing patterns,
J is reactive. Therefore, even when the system is far
from the parameter regime of deterministic patterns, the
amplitude of the stochastic patterns is far larger than
what one would expect from the analysis of the eigenval-
ues. We can see this by analyzing the amplitude of the
patterns at the point P in Fig. 4. This point (b/e = 5.8
and DV /DU = 3.4) is chosen to be very far from the de-
terministic Turing pattern regime. At this b/e ratio, the
ratio of the diffusion constants has to be at least ten times
larger for the system to exhibit deterministic Turing pat-
terns. The amplitude of the patterns as determined by
Eq. (2) is dependent on the eigenvalues of K (fixed by
the choice of the point P ) and the nonnormality index
H(K) which can be tuned by changing the ratio a/c2/3

without changing the point P . The right panel of Fig. 4
shows that the amplification of stochastic patterns for
the point P varies over orders of magnitude for a small
range of a/c2/3.
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The right panel of Fig. 1 shows the time series of the
amplified stochastic Turing patterns in the concentration
of the species U , in a simulation of our model in one
dimension (for the point specified in the right panel of
Fig. 4). The mean squared amplitude of these spatial
patterns is about 0.21, while the upper bound for the
amplitude of the pattern in the absence of nonnormality
is 2.5× 10−3. The nonnormality index H (of the slowest
Fourier mode k0 = 6) is about 103 justifying the two
order of magnitude amplification in the amplitude of the
stochastic patterns.
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F. Jülicher, and B. M. Friedrich, Phys. Rev. Lett. 114,
138101 (2015).

[5] T. Butler and N. Goldenfeld, Physical Review E 84,
011112 (2011).

[6] J. D. Murray, Mathematical Biology. II Spatial Models
and Biomedical Applications {Interdisciplinary Applied
Mathematics V. 18} (Springer-Verlag New York Incor-
porated, 2001).

[7] V. Castets, E. Dulos, J. Boissonade, and P. De Kepper,
Phys. Rev. Lett. 64, 2953 (1990).

[8] Q. Ouyang and H. L. Swinney, Nature 352, 610 (1991).
[9] P. K. Maini, T. E. Woolley, R. E. Baker, E. A. Gaffney,

and S. S. Lee, Interface focus , rsfs20110113 (2012).
[10] M. Mobilia, I. T. Georgiev, and U. C. Täuber, Journal
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