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Current understanding is that the non-Newtonian rheology of active matter suspensions is gov-
erned by fluid-mediated hydrodynamic interactions associated with active self-propulsion. Here we
discover an additional contribution to the suspension shear stress that predicts both thickening and
thinning behavior, even when there is no nematic ordering of the microswimmers with the imposed
flow. A simple micromechanical model of active Brownian particles in homogeneous shear flow
reveals the existence of off-diagonal shear components in the swim stress tensor, which are indepen-
dent of hydrodynamic interactions and fluid disturbances. Theoretical predictions from our model
are consistent with existing experimental measurements of the shear viscosity of active suspensions,
but also suggest new behavior not predicted by conventional models.

PACS numbers: 05.65.+b, 47.63.Gd, 87.19.rh

Shear rheology of suspensions containing self-propelled
bodies at low Reynolds numbers has been studied inten-
sively during the past several years. Conventional mod-
els predict that fluid disturbances induced by active self-
propulsion help to ‘stretch’ or ‘contract’ the fluid along
the extensional axis of shear, resulting in large deviations
in the effective shear viscosity of the suspension relative
to that of the embedding medium[1–3]. In this work,
we demonstrate that intrinsic self-propulsion engenders a
‘shear swim stress’ that affects the rheology of active sys-
tems in previously unreported ways. The swim stress is a
‘diffusive’ stress generated by self-propulsion and is dis-
tinct from, and in addition to, the hydrodynamic stress
resulting from fluid-mediated hydrodynamic interactions.

Earlier[4, 5] we derived a direct relationship between
the translational diffusivity D and the stress generated
by a dilute suspension of particles: σ = −nζD, where n
is the particle number density and ζ is the hydrodynamic
drag coefficient. The effective translational diffusivity of
a dilute active system is Dswim = U2

0 τRI/6 for times
t > τR, where U0 and τR are the swimming speed and
reorientation time of the particle, respectively. This gives
directly the unique mechanical swim stress exerted by
active particles, σswim = −nζDswim = −nζU2

0
τRI/6,

which has been used to predict the phase behavior of
self-assembling active matter[4, 6–8]. The swim stress
is analogous to the osmotic Brownian stress of passive
particles.

In shear flow, particle motion in the flow gradient direc-
tion couples to advective drift in the flow direction (Fig
1), resulting in nonzero off-diagonal components in the
long-time particle diffusivity, Dxy 6= 0. This directly im-
plies the existence of a nonzero shear component in the
swim stress tensor, σswim

xy = −nζDswim
xy . In this work,

we discover that Dswim
xy > 0 for small shear rates, which

gives σswim
xy < 0 and a decrease in the effective shear vis-

cosity of active suspensions below that of the surrounding
solvent for pusher, puller, and neutral-type microswim-

FIG. 1: Schematic of active particles with swimming
speed U0 and reorientation time τR in simple shear flow
with fluid velocity u∞

x = γ̇y, where γ̇ is the magnitude
of shear rate. The unit vector q(t) specifies the
particle’s direction of self-propulsion. Diffusion of active
particles along the extensional axis of shear acts to
‘stretch’ the fluid and reduce the effective shear
viscosity, similar to the effect that the hydrodynamic
stress plays for pusher-type microorganisms.

mers. As shown in Fig 1, diffusion of active particles
along the extensional axis of shear acts to ‘stretch’ the
fluid and reduce the effective shear viscosity, analogous
to the effect of the hydrodynamic stress generated by
pusher microorganisms. Whereas the swim pressure rep-
resents the mechanical confinement of diffusing active
particles[4], a nonzero shear swim stress represents the
mechanical stress required to prevent shear deformation
of the suspension.

To motivate this new perspective, we consider a sin-
gle rigid active particle that swims with a fixed speed
U0 in a direction specified by a body-fixed unit orienta-
tion vector q, which relaxes with a timescale τR due to
rotational Brownian motion (see Fig 1). The particle is
immersed in a continuous Newtonian solvent with viscos-
ity η0. We analyze the dynamics of the particle in steady
simple shear flow u∞ = γ̇yex, where γ̇ is the magnitude
of shear rate. The Smoluchowski equation governing the
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probability distribution P (x, q, t) is

∂P

∂t
+∇ · jT +∇q · jR = 0, (1)

where the translational and rotational fluxes are given
by, respectively[9–11],

jT = (u∞ + U0q)P, (2)

jR = γ̇ (q ·Λ+B(I − qq)q : E)P −
1

τR
∇qP. (3)

In Eq 3, the antisymmetric and symmetric velocity-
gradient tensors Λ and E are nondimensionalized by γ̇,
and∇q is the rotational gradient operator. The dynamics
of the particle are controlled by a balance between shear-
induced particle rotations and the particle’s intrinsic re-
orientation time, given by a shear Péclet number Pe ≡
γ̇τR. The constant scalar B = ((a/b)2 − 1)/((a/b)2 + 1),
where a and b are the semi-major and minor radii of the
particle, respectively; B = 0 for a spherical particle. The
terms in Eq 2 are the advective contributions from am-
bient fluid flow and intrinsic self-propulsion of the swim-
mer. The Stokes-Einstein-Sutherland translational dif-
fusivity, D0, is omitted in Eq 2, since the magnitude of
the self-propulsive contributionDswim = U2

0 τR/6 may be
O(103) larger (or more) than D0 for many active swim-
mers of interest.
Following established procedures[5, 10, 12] (see Sup-

plementary Materials), we obtain the steady solution to
Eqs 1-3 for times t > τR and t > γ̇−1 when all orienta-
tions have been sampled; the resulting solution gives the
effective translational diffusivity, hydrodynamic stress,
and swim stress. As shown in Fig 2, fluid shear intro-
duces anisotropy and nonzero off-diagonal components in
the particle diffusivity. The asymptotic solution at small
shear rates is Dswim/(U2

0
τR/6) = I + Pe(1 + B)E/2 +

O(Pe2). In the flow direction, Dswim
xx initially increases

with a correction of O(Pe2) due to increased sampling
of fluid streamlines in the flow gradient direction, but
decreases to zero as Pe → ∞ because the particle sim-
ply spins around with little translational movement. This
non-monotonic behavior was also seen in the dispersion of
active particles in an external field[5] and sedimentation
of noncentrosymmetric Brownian particles[13]. In the
flow gradient direction, Dswim

yy decreases monotonically

with increasing Pe. In the vorticity direction, Dswim
zz is

unaffected by shearing motion and is constant for all Pe.
Most interestingly, the off-diagonal diffusivityDswim

xy is
nonzero, O(Pe) for small Pe, non-monotonic, and nega-
tive for intermediate values of Pe. Random diffusion in
the gradient direction, Dswim

yy , allows the particle to tra-
verse across streamlines, which couples to the advective
drift in the flow direction to give a non-monotonic off-
diagonal shear diffusivity (see schematic in Fig 1). In an
experiment or computer simulation, calculation of shear-
induced diffusivity requires attention because advective

Pe = γ̇τR
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FIG. 2: Swim diffusivity as a function of shear Péclet
number for two different values of geometric factor B
(B = 0 sphere; B = 0.8 ellipsoid). Solid and dashed
curves are theoretical solutions, and the symbols are
Brownian dynamics (BD) simulation results.
Dash-dotted curve for Dxy is the small-Pe solution for
B = 0.8.

drift translates the particles in the flow direction, re-
sulting in Taylor dispersion with mean-squared displace-
ments that do not grow linearly with time[14].

A nonzero off-diagonal swim diffusivity implies the
presence of a shear swim stress from σswim

xy = −nζDswim
xy .

From Fig 2 we see that Dswim
xy > 0 for small Pe, which

gives σswim
xy < 0 and the effective shear viscosity of the

suspension decreases below that of the surrounding sol-
vent. In addition to an indirect calculation of the stress
via the diffusivity, we can also compute it directly us-
ing the virial expression for the stress. The Langevin
equation governing the motion of a single swimmer in
simple shear flow (without translational Brownian mo-
tion) is 0 = −ζ(U − u∞) + F swim, where u∞ = γ̇yex,
and F swim ≡ ζU 0 is the self-propulsive swim force of the
particle[4].

The swim stress is the first moment of the force,

σswim ≡ −n
〈

[

xF swim
]sym

〉

, where [·]
sym

is the sym-

metric part of the tensor. The angle brackets de-
note an average over all particle configurations, 〈(·)〉 =
∫

(·)P (x, q)dxdq where P (x, q) is the steady solution
to Eqs 1-3. It is important to ensure symmetry in
the swim stress because angular momentum conserva-
tion requires the stress to be symmetric in the ab-
sence of body couples. Direct calculation of the swim
stress via the virial definition (see Supplementary Mate-
rials) gives results identical to those obtained from the
diffusivity-stress relationship; Brownian dynamics simu-
lations also corroborate our result. In our simulations,
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the particles were evolved following the Langevin equa-
tion given above, in addition to the rotational dynam-
ics, 0 = −Ω + γ̇ (q ·Λ+B(I − qq)q : E) +

√

2/τRΓR,
where Ω is the angular velocity and ΓR is a unit random
normal deviate: ΓR(t) = 0 and ΓR(t)ΓR(0) = δ(t)I.
Angular velocity is related to the orientation vector by
dq/dt = Ω× q. Results from simulations were averaged
over 104 independent particle trajectories for times long
compared to τR and γ̇−1.

Until this work, only the normal components of the
swim stress (i.e., σswim

ii where i = x, y, z) have been
studied[4–8, 11, 15–23], which give the average pressure
required to confine an active body inside of a bounded
space. We discover here that the off-diagonal shear swim
stress, σswim

xy , provides a new physical interpretation of
the non-Newtonian shear rheology of active matter.

From continuum mechanics, we have ∇ · σ = 0 and
∇ · u = 0, where σ is the total stress of the suspen-
sion and u is the suspension-average velocity. The stress
can be written as σ = −pfI + 2η0γ̇ (1 + 5φ/2)E +σact,
where pf is the fluid pressure, η0 is the viscosity of the
continuous Newtonian solvent, φ is the volume fraction
of particles (= 4πa3n/3 for spheres), 5φ/2 is the Ein-
stein shear viscosity correction that is present for all sus-
pensions (taking the result for spherical particles in this
work), and the active stress is the contribution due to
self-propulsion of the particles, σact = σH + σswim.

The hydrodynamic stress is σH = nSH =
nσH

0 (〈qq〉 − I/3), where SH is the hydrodynamic
stresslet associated with the swimmers’ permanent force
dipole, and σH

0 is its magnitude which scales as σH
0 ∼

ζU0a (σH
0

< 0 for ‘pushers,’ σH
0

> 0 for ‘pullers’)[1, 24,
25]. For swimmers with an isotropic orientation distri-
bution, 〈qq〉 = I/3, the hydrodynamic stress makes no
contribution to the suspension stress. The hydrodynamic
stress is present in the model by Saintillan[1] and is the
only contribution that has been considered in the litera-
ture.

The main contribution of this work is the identification
and inclusion of an off-diagonal shear component in the

swim stress, σswim ≡ −n
〈

[

xF swim
]sym

〉

. The swim

force of an active Brownian particle is F swim ≡ ζU0q,
so we obtain σswim = −nζU2

0 τR 〈[xq]
sym

〉, where nondi-
mensional position x = x/(U0τR).

It is important to distinguish and differentiate the
swim stress from the hydrodynamic stress. First, σswim

is an entropic term because it arises from the random
walk process associated with active swimming and tum-
bling, whereas σH comes from fluid-mediated hydrody-
namics and the multipole moments generated by self-
propulsion. Naturally, this leads to a different scaling of
the swim stress σswim ∼ (nζU0)(U0τR) compared to the
hydrodynamic stress σH ∼ (nζU0)a. The relevant length
scale of the swim stress is the swimmer run length, U0τR,
as opposed to the hydrodynamic stress that scales with

the swimmer size a (see schematic in Fig 1).
In addition to the two terms above, we know from

passive Brownian suspensions that non-spherical par-
ticles like polymers and liquid crystals can generate
a shear stress from flow-induced particle alignment or
stretching[26, 27]. Compared with the swim stress, the
magnitudes of these terms are O(kBT/(ksTs)), where
ksTs ≡ ζU2

0
τR/6 is the activity scale associated with

self-propulsion[6]. For most microswimmers of interest,
kBT/(ksTs) . O(10−3), so these terms are not included
in this work.
For steady simple shear flow, the shear stress is con-

stant across every plane, and we obtain σxy = σ = ηeff γ̇,
where the effective viscosity of the suspension is

ηeff

η0
= 1 +

5

2
φ+

σH
xy + σswim

xy

η0γ̇
, (4)

where σH
xy = nσH

0
〈qxqy〉 and σswim

xy = −n(〈xF swim
y 〉 +

〈yF swim
x 〉)/2. For the active Brownian particle model

with swim force F swim ≡ ζU0q, we obtain σswim
xy =

−nζ‖U
2

0
τR(〈xqy〉 + 〈yqx〉)/2, where x and y are nondi-

mensionalized by the run length U0τR.
Active particles that do not establish macroscopic ori-

entational order with the imposed flow do not generate
a hydrodynamic stress, σH

xy = 0, but can exert a nonzero
swim stress, giving, for all Pe (see Supplementary Mate-
rials),

ηeff

η0
= 1 +

5

2
φ−

3φ

16

(

1

PeR

)2
(

1− (Pe/4)2

[1 + (Pe/4)2]
2

)

. (5)

The reorientation Péclet number PeR ≡ a/(U0τR) is a
ratio of the particle size a to the swimmer run length
U0τR. For small Pe and PeR, η

eff is smaller than the
Newtonian viscosity of the surrounding solvent, η0. With
increasing Pe, ηeff increases and becomes larger than
η0, until a maximum is reached at intermediate Pe. As
Pe → ∞, the particles spin around in place without
taking a step, so ηeff approaches a constant given by
the solvent’s viscosity plus the Einstein correction. This
non-monotonic behavior has not been predicted previ-
ously because conventional models do not include the
swim stress.
For non-spherical particles, the hydrodynamic drag

tensor varies with the orientation as ζ = ζ‖qq + ζ⊥(I −
qq), where ζ‖ and ζ⊥ are the parallel and perpendicular
components. We assume here that the direction of self-
propulsion is aligned with the body-fixed axisymmetric
polar axis, U0 = U0q, so the swim diffusivity-stress rela-
tionship becomes σswim = −nζ‖D

swim.
Analytical solutions to Eqs 1-3 are not available for

non-spherical particles, so a perturbation analysis for
small Pe gives the swim stress σswim/(nζ‖U

2
0 τR/6) =

−I − Pe(1 + B)E/2 + O(Pe2), and the hydrodynamic
stress σH/(nσH

0
) = BPeE/15 + O(Pe2). Substituting
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Pe = γ̇τR
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FIG. 3: Comparison of our model, Eq 4, with shear
experiments of López et al[28] with motile E. coli

bacteria at different concentrations. Horizontal dashed
lines for small Pe are the analytical solutions of Eq 6.

these results into Eq 4, we obtain the effective shear vis-
cosity for small Pe:

ηeff (Pe → 0)

η0
= 1 +

5

2
φ−

(

−
1

5
BαPeR+

1 +B

4

)

3φ

4Pe2R
K
(a

b

)

, (6)

where α is a parameter associated with the force dipole
magnitude, defined as α ≡ σH

0
/(ζ‖U0a), K is the shape

factor in the hydrodynamic drag coefficient in the parallel
component ζ‖ = 6πη0bK, and a and b are the semi-major
and minor radii of an ellipsoidal particle, respectively.
The constant scalar B = ((a/b)2−1)/((a/b)2+1); B = 0
for a spherical particle.
Figure 3 compares the effective shear viscosity from

our micromechanical model (Eq 4) with the experiments
of López et al[28]. Physical properties of the E. coli bac-
teria used in our model were taken from their work[28],
with swimming speed U0 = 20µm/s, reorientation time
τR = 4.8s, body length 2a = 1.7µm, and body diame-
ter 2b = 0.5µm, which give the hydrodynamic drag shape
factorK = 1.5 and geometric coefficient B = 0.88. Parti-
cle reorientations are modeled in Eq 3 as a diffusive Brow-
nian process using the run-and-tumble equivalence[29],
so τR is consistent with that reported by López et al[28],
which is a directional persistence time based on the bacte-
ria tumble frequency, 1/ω = τR/2 = 2.4s. The reorienta-
tion Péclet number based on the swimmer body length a
yields negative effective shear viscosity predictions, so we
have adopted the length scale associated with the force
dipole strength of the E. coli, ld = 17.7µm from Lopez et
al[28], which gives PeR = ld/(U0τR) ≈ 0.18. The force
dipole parameter α ≡ σH

0
/(ζ‖U0a) ≈ −15, which is based

Pe = γ̇τR
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FIG. 4: Effective suspension viscosity of spherical active
particles at dilute concentrations and reorientation
Péclet number PeR ≡ a/(U0τR) = 0.035. Filled circles
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et al[30] using ‘puller’ microalgae C. Reinhardtii. The
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on the reported force dipole strength of the bacteria[28],
σH
0 = −3.8± 1.0× 10−18Pa ·m3.

In the results of Fig 3, the ratio σswim
xy /(σswim

xy +σH
xy) ≈

0.5 for small Pe and all bacteria concentrations, which
quantifies the importance of the swim stress. For swim-
mers with PeR ≪ 1 such as puller microalgae C. Rein-

hardtii, the hydrodynamic stress plays a negligibly small
role and the swim stress dominates. Figure 4 compares
our model with the experimental data of Rafäı et al[30],
who measured the effective shear viscosity of a suspen-
sion containing C. Reinhardtii. Physical properties of
the microalgae used in our model were taken from their
work[30], with swimming speed U0 = 40µm/s, reorienta-
tion time τR = 3.5s, and body radius a = 5µm, giving
PeR ≡ a/(U0τR) ≈ 0.035. This motile microorganism
has a spherical body but can align with an imposed flow,
perhaps due to rheotaxis or small asymmetry arising from
the two flagella used for self-propulsion. The solid curve
in Fig 4 is the analytical theory of Eq 5 which does not
involve the hydrodynamic stress. We obtain good agree-
ment with experimental data and Brownian dynamics
simulations, which demonstrates the importance of the
shear swim stress for active systems with small reorien-
tation Péclet numbers.

Results in Fig 4 suggest new behavior not predicted
by conventional models. Previous studies[1–3, 28] have
predicted that puller-type microorganisms like C. Rein-

hardtii increase the effective suspension viscosity above
that of the suspending fluid because the hydrodynamic
stress is positive for pullers, σH

0
> 0. However, the swim
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stress predicts both thickening and thinning behavior, an
increase and decrease of the effective viscosity, for push-
ers, pullers, and even particles that generate no hydrody-
namic stress. Shear thickening and thinning are seen for
small PeR; they are also present in Fig 3 but the mag-
nitudes are too small to see. Because the swim stress is
large in magnitude compared to the hydrodynamic stress
for systems with PeR ≪ 1, the effective shear viscosity
decreases below η0 at small shear rates regardless of the
swimmer shape or hydrodynamic stress. Further exper-
iments with puller microorganisms at small shear rates
are needed to verify if the effective viscosity decreases
below the solvent viscosity.
In Fig 4, we observe a “negative” effective shear vis-

cosity for small Pe, which means that a shear stress must
be applied in a direction opposing the flow to maintain
a fixed shear rate. The spontaneous onset of active dif-
fusion of particles along the extensional axis of shear can
result in a negative effective shear viscosity, analogous to
that of active nematics for ‘pusher’ swimmers (see Fig 1).
For a constant shear stress experiment, a reduction in ef-
fective viscosity would trigger the shear rate to increase,
so a self-regulating processes would preclude a negative
viscosity. For active suspensions with a larger concen-
tration of particles, we must include an additional stress
contribution from interparticle interactions between the
swimmers, σP = −n〈xijF

P
ij〉. Our simulations reveal

that the interparticle stress has a negligible effect for the
dilute concentrations studied in this work. The force
moment for the interparticle stress scales as the parti-
cle size, so its contribution is O(PeR) smaller than the
swim stress.
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