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Abstract

Microwave magnetodynamics in ferromagnets are often studied in the small-amplitude or weakly

nonlinear regime corresponding to modulations of a well-defined magnetic state. However, strongly

nonlinear regimes, where the aforementioned approximations are not applicable, have become ex-

perimentally accessible. By re-interpreting the governing Landau-Lifshitz equation of motion, we

derive an exact set of equations of dispersive hydrodynamic form that are amenable to analytical

study even when full nonlinearity and exchange dispersion are included. The resulting equations

are shown to, in general, break Galilean invariance. A magnetic Mach number is obtained as a

function of static and moving reference frames. The simplest class of solutions are termed uniform

hydrodynamic states (UHSs), which exhibit fluid-like behavior including laminar flow at subsonic

speeds and the formation of a Mach cone and wave-fronts at supersonic speeds. A regime of

modulational instability is also possible, where the UHS is violently unstable. The hydrodynamic

interpretation opens up novel possibilities in magnetic research.
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Magnetodynamics in thin film ferromagnets have been studied for many decades. Ad-

vances in nanofabrication and the advent of spin transfer [1, 2] and spin-orbit torques [3] have

opened a new frontier of experimentally accessible nonlinear physics [4–8]. Large-amplitude

excitations negate the use of typical linear or weakly nonlinear analyses [9–11], necessitating

instead either micromagnetic simulations [12] or analytical approaches suited to strongly

nonlinear dynamics. Therefore, an interpretation of the Landau-Lifshitz (LL) equation that

includes full nonlinearity, yet is amenable to analytical study, would be insightful.

A hydrodynamic interpretation was proposed by Halperin and Hohenberg [13] to describe

spin waves in anisotropic ferro- and antiferromagnets. Recently, theoretical studies of thin

film ferromagnets with planar anisotropy have identified a relationship to superfluid-like

hydrodynamic equations [14–19] supporting large-amplitude modes beyond strongly non-

linear spin wave and macrospin modes [10, 11]. However, these studies are limited to the

long-wavelength, low-frequency regime where linear and weakly-nonlinear approaches apply.

The relaxation of these approximations along with the identification of a deep connection

between magnetodynamics and fluid dynamics brings new perspectives on magnetism and

reveals novel physical regimes. Indeed, nonlinear, dispersive physics are required to describe

superfluids and exotic structures such as solitons, quantized vortices, and dispersive shock

waves (DSWs) [20–23], as exemplified by Bose-Einstein condensates (BECs) [20–22, 24–

34]. To obtain an analytical description of large-amplitude magnetic textures, we introduce

dispersive hydrodynamic (DH) equations for a thin-film ferromagnet.

This letter shows that the LL equation exactly maps into a DH system of equations, with-

out long-wavelength and low-frequency restrictions. The conservative equations map to the

Euler equations of a compressible, isentropic fluid. The DH equations for a planar ferromag-

net admit spin-current-carrying, spatially periodic magnetization textures termed “uniform

hydrodynamic states” (UHSs), providing a continuous and generalized description of spin

superflows [14–16] up to small-amplitude spin waves. Within the DH formulation, we

prove that planar ferromagnets break Galilean invariance and elucidate their

reference-frame-dependent dynamics by identifying the linear dispersion rela-

tion for spin waves propagating on top of a UHS background. Such symmetry

breaking at the level of linear spin waves is striking and fundamentally dif-

ferent from the non-trivial reference-frame-dependent dynamics of topological

textures due to their inherent nonlinearity, e.g., Walker breakdown for do-
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main wall propagation [35] and core reversal in magnetic vortices [36]. In

this letter, we also show that static textures can break Galilean invariance for

infinitesimal spin wave excitations that ride on a textured background. To em-

phasize this novel result, we suggest a Brillouin light scattering experimental

test where broken Galilean invariance manifests itself as a spin-wave disper-

sion shift in the presence of a UHS.

We consider the nondimensionalized LL equation (see Supplementary Material [37])

∂m

∂t
= −m× heff − αm×m× heff . (1)

Damping is parametrized by the Gilbert constant α, m = M/Ms = (mx,my,mz) is the

magnetization vector normalized to the saturation magnetization, and heff = ∆m−σmzẑ +

h0ẑ is the normalized effective field including: ferromagnetic exchange, ∆m; total anisotropy

determined by σ = sgn(Ms−Hk), where Hk is the perpendicular magnetic anisotropy field,

such that σ = +1 (σ = −1) represents a material with easy-plane (perpendicular magnetic)

anisotropy; and a perpendicular applied field, h0. This nondimensionalization of a two-

dimensional (2D) thin film provides a parameter-free description of materials with planar

or uniaxial anisotropy. We consider an idealized case where in-plane magnetic anisotropy is

negligible, i.e., its symmetry-breaking contribution only perturbs the leading order solution,

similar to domain wall Brownian motion [38].

Fluid-like variables are introduced using the canonical Hamiltonian cylindrical transfor-

mation [39]

n = mz, u = −∇Φ = −∇ [arctan (my/mx)] , (2)

where Φ is the azimuthal phase angle. We identify n (|n| ≤ 1) as the longitudinal spin

density and u as the fluid velocity. There are two important features of Eq. (2). First, the

flow is irrotational because the velocity originates from a phase gradient, i.e., only quantized

circulation, such as a magnetic vortex [15], is possible. Second, Φ is undefined when n = ±1,

corresponding to fluid vacuum.

Utilizing the transformation (2) and standard vector calculus identities, the LL equa-
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tion (1) can be exactly recast as two DH equations [37]

∂n

∂t
= ∇ ·

[
(1− n2)u

]︸ ︷︷ ︸
spin current

+α(1− n2)
∂Φ

∂t︸ ︷︷ ︸
spin relaxation

, (3a)

∂u

∂t
= ∇

[
(σ − |u|2)n

]︸ ︷︷ ︸
velocity flux

−∇
[

∆n

1− n2
+

n|∇n|2

(1− n2)2

]
︸ ︷︷ ︸

dispersion

(3b)

−∇h0︸ ︷︷ ︸
potential force

+α∇
[

1

1− n2
∇ ·
[
(1− n2)u

]]
︸ ︷︷ ︸

viscous loss

.

Equation (3a) is reminiscent of spin density continuity [40] from which we identify the spin

density flux as the spin current

Js = −(1− n2)u. (4)

Vacuum carries zero spin current. However, maximal spin current is reached when n = 0,

identified as the saturation density. This implies that ferromagnetic textures (u 6= 0) are

better spin current conductors than small-amplitude spin waves [41]. The hydrodynamic

equivalents for the fluid velocity Eq. (3b) are displayed. When n = |∇h0| = 0, Eq. (3b)

becomes ∂u/∂t = α∇(∇·u), a diffusion equation for the velocity, hence α > 0 acts similar

to a viscosity. Previous works [13–16] have neglected exchange dispersion and nonlinearity

in Eqs. (3) by assuming the long-wavelength, near saturation density, low-velocity limit, i.e.,

|∇n| � 1, |n| � 1, and |u|2 � 1. As we show below, the full nonlinearity and exchange

dispersion included in Eqs. (3a) and (3b) are required to describe the existence and stability

regions of magnetic hydrodynamic states and broken Galilean invariance.

Insight can be gained from the homogeneous field ∇h0 → 0, conservative α → 0 limit,

where Eqs. (3) become conservation laws for n and u. Notably, the non-negative devia-

tion from vacuum (1 − n2), or fluid density, is not conserved. A conservation law for the

momentum p = nu can also be obtained

∂p

∂t
= ∇ · [(1− n2)uuT ] +∇P (n, |u|) +∇ ·

[
∇n∇nT

1− n2

]
−∇

[
n∆n+ 1

2
|∇n|2

1− n2
+

n2|∇n|2

(1− n2)2

]
, (5)

where the magnetic pressure is defined as

P (n, |u|) =
1

2
(1 + n2)(σ − |u|2)− σ. (6)
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Equations (3a) with α = 0, and (5) are analogous to the time-reversed Euler equations

expressing conservation of mass and momentum for a 2D, compressible, isentropic fluid with

a density- and velocity-dependent pressure P .

Additionally, the one-dimensional conservative limit of Eqs. (3a) and (3b) are exactly

the equations describing polarization waves in two-component spinor Bose gases [33, 34] and,

in the near vacuum (|n| ∼ 1), long-wavelength, and low-frequency regime, approximate the

mean field dynamics of a BEC [24, 42]. This suggests that thin film ferromagnets are ripe

for the exploration of nonlinear structures observed in BECs, e.g., “Bosenovas” [25, 27] in

attractive (σ = −1); and dark solitons [30], vortices [22], and DSWs [20] in repulsive (σ =

+1) BECs. Some of these structures have been observed in uniaxial (dissipative droplets [5–

7]) and planar (vortices [8]) thin film ferromagnets. As we demonstrate, hydrodynamic

states are also supported.

Consider an ideal planar thin film ferromagnet (σ = +1) and a homogeneous field. Equa-

tions (3) admit a static (∂Φ/∂t = 0) solution with nonzero fluid velocity, u = ux̂, |u| < 1,

n = 0, and h0 = 0. These are ground states known as spin-density waves (SDWs) [43]

or soliton lattices [15] that minimize both exchange and anisotropy energies, i.e., any

configuration with |u| < 1 is stable when m lies purely in-plane. SDWs exhibit a periodic

structure that affords them topological stability whereby the phase rotation can be unwound

only by crossing a magnetic pole (|n| = 1) [15, 37]. For a non-zero field, |h0| < 1−u2, SDWs

are also supported for any |u| < 1 when n = h0/(1−u2) due to the longitudinal spin density

relaxation effected by Eq. (3a). Such a relaxation maintains u and thus the topology of and

finite spin current carried by a SDW. This property is identical to that of equilibrium trans-

verse spin currents in other magnetic textures including domain walls and vortices [Ref. 15,

Eq. (4) in Ref. 44].

For no damping, Eqs. (3) admit dynamic solutions parametrized by the constants (n̄, ū),

where |n̄| ≤ 1, u = ūx̂, called uniform hydrodynamic state (UHS). The fluid velocity ū is

the wavenumber of the UHS whose frequency Ω = dΦ/dt is

Ω(n̄, ū) = −(1− ū2)n̄+ h0, (7)

obtained from the magnetic equivalent of Bernoulli’s equation 2P (n̄, |ū|) + ū2 + n̄(Ω− h0) = −σ

[37]. Here, positive ū implies clockwise spatial increase of the azimuthal phase Φ whereas

negative Ω implies clockwise temporal precession about the +ẑ axis defining forward and
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FIG. 1. Schematic of a UHS. The longitudinal spin density is the vertical axis limited by vacuum

(|n| = 1) and saturation density (n = 0). Forward and backward wave conditions are determined

by the sign of the frequency Ω.

backward wave conditions, schematically shown in Fig. 1. This is in contrast to magne-

tostatic forward and backward volume waves established by the relative direction between

their wave vector and the external applied field.

The magnetization in a UHS can exhibit large angle deviations from the +ẑ axis, making

it a strongly nonlinear texture. Near saturation density, |n̄| � 1, a UHS limits to a spin

superflow [14–16] whereas near vacuum, n̄ ∼ ±1, the UHS frequency Eq. (7) becomes the

exchange spin-wave dispersion Ω ∼ ±ū2 + h0 ∓ 1. Thus, a UHS is the generalization of

periodic magnetic textures from large (spin superflow) to small (spin-wave) amplitudes. It

is important to recognize that the ground state for the UHS is a SDW, i.e., the ground

state of planar ferromagnets is not defined by a single orientation except for the vacuum

state. In this sense, the UHS is significantly different from the conventional theory of spin

waves based on the Holstein-Primakoff transformation [45] and their strongly nonlinear

dynamics. [10, 11].

Small-amplitude perturbations of a UHS can be regarded as spin waves with a generalized

dispersion relation obtained from the linearization of Eqs. (3a) and (3b)

ω±(k,V) = (2n̄u−V) · k± |k|
√

(1− n̄2)(1− ū2) + |k|2, (8)

where k is the wave vector, and the velocity V reflects a Doppler shift, i.e., the veloc-

ity of an external observer with respect to the UHS. The dispersion relation shows that

magnetic systems lack Galilean invariance. In other words, an observer velocity V ∝ u

does not generally result in a reference frame where the relative fluid velocity is zero.

Galilean invariance is recovered near vacuum with dispersion ω±(k,V) = (2u−V) ·k±|k|2,

i.e. exchange-mediated spin waves and the BEC limit [24, 42]; and for spin superflow,

ω±(k,V) = −V · k± |k|
√

1 + |k|2. More importantly, the fluid velocity ū confers a spectral
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shift in Eq. (8) due to the UHS’s intrinsically chiral topology , similar to interfacial

Dzyaloshinskii-Moriya interaction [46].

The long wavelength limit of Eq. (8) leads to coincident spin-wave phase and group

velocities, i.e., magnetic sound velocities

s± = 2n̄ū+ V̄ ±
√

(1− n̄2)(1− ū2). (9)

Here, we assume V collinear and opposite to u (V = −V̄ x̂). Subsonic flow occurs when

spin waves can propagate both forward and backward: s− < 0 < s+. However, when

0 < s− < s+, the flow is supersonic and some spin waves are convected away. These

conditions can be quantified in terms of the Mach numbers Mu, MV when V̄ = 0, ū = 0,

respectively

Mu = |ū|
√

1 + 3n̄2

1− n̄2
, MV =

|V̄ |√
1− n̄2

. (10)

For both, the flow is subsonic or laminar when M < 1. In the supersonic regime, M > 1,

it is energetically favorable to generate spin waves, thus leading to the Landau breakdown

of superfluid-like flow [47]. The resulting phase diagrams are shown in Fig. 2. Interestingly,

Eq. (10) predicts that M is independent of h0, implying that only the UHS longitudinal

spin density and its non-trivial topology, ū, set the supersonic transition, not the frequency

Ω. It must be noted that broken Galilean invariance causes the Landau criterion concept

ū < min [s±] [24] to give an incorrect sonic curve.

A qualitatively distinct flow regime occurs when |ū| > 1 and the sound velocities Eq. (9)

are complex. This corresponds to a change in the mathematical type of the long wavelength

Eqs. (3) from hyperbolic (wave-like) to elliptic (potential-like). Consequently, the UHS is

unstable in the sense that small fluctuations lead to drastic changes in its temporal evolution

or modulational instability (MI) [48, 49] . Note that |ū| < 1, |V̄ | > 1 does not result

in MI.

The aforementioned regimes were validated by performing micromagnetic simulations

with damping [12]. We simulate dynamics for an ideal Permalloy nanowire (µ0Ms = 1 T)

of nondimensional width w = 20 with transverse free spin boundary conditions and hori-

zontal periodic boundary conditions (PBCs). We initialize with a SDW, include only local

dipolar fields (zero thickness limit), and set α = 0.01. A homogeneous field h0 stabilizes

the SDW at a specific n̄ and a quantized ū that satisfies the PBC. This enables us to nu-

merically probe along a horizontal line in the phase diagram of Fig. 2(a) by implementing a
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FIG. 2. UHS phase diagram for (a) V̄ = 0 and (b) ū = 0 with subsonic (white), supersonic (gray),

and modulationally unstable (yellow) regimes. Circles are numerical estimates of the sonic curves

Mu = 1 and MV = 1. The BEC regime sonic curve is dashed. Open squares represent the sonic

curve of a width w = 20, thickness δ = 1 nanowire including non-local dipolar fields and T = 300 K

thermal field. Selected simulation conditions are denoted by x1 to x4.

slowly increasing h0. By inserting a point defect (a magnetic void), the SDW spontaneously

generates spin waves when n̄ is large enough to cross the supersonic transition, leading to a

breakdown in the spatial homogeneity of the SDW [37]. Due to the SDW’s topology and the

PBC, the change in symmetry is accommodated by annihilating a single 2π phase rotation

and reducing ū in a quantized fashion. Topologically, this is possible in planar ferromagnets

by crossing a magnetic pole, e.g., nucleating a vortex, as shown in the Supplementary Video

1. This was also observed in wires of width w = 40. The sonic curve estimated this way

is shown in Fig. 2(a) by black circles, demonstrating good agreement with Mu = 1. We

attribute any discrepancy to boundary and finite size effects [50], as further explored below.

We use the same numerical method described above with the addition of thermal

fluctuations and the symmetry-breaking non-local dipolar fields to study the stability of a

SDW in a nanowire of nondimensional thickness δ = 1. In this case, the SDW topological

structure completely collapses at the boundary shown in Fig. 2(a) by squares. In contrast to

a recent report where stable spin superflow was predicted only for nanowires shorter than

the material exchange length [18], we observe stable SDWs over a wide range of parameters

in phase space (Supplementary Video 2).

The supersonic transition in the moving frame is estimated by use of a numerical method

described elsewhere [51]. A moving, perpendicular, localized, weak magnetic field spot with
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FIG. 3. Snapshots of a (a), (b) SDW flowing past a stationary magnetic defect (V̄ = 0) and; (d),

(e) a homogeneous state subject to a moving, localized magnetic field (V̄ 6= 0) with longitudinal

spin density n (grayscale map) and velocity field u (arrows). The simulation region is much larger

than what is visible. The defect or localized magnetic field position is shown by a red circle. For

subsonic conditions, (a) and (d), the flow is static and laminar. In supersonic flow, (b) and (e), a

Mach cone (dashed) and static wavefronts are observed. Propagating vortex-antivortex pairs with

cores (asterisks) generated in (b) are shown in (c) far from the defect as opposite circulations of

the velocity field (background ū = 0.6 subtracted).

velocity V̄ is used to perturb a homogeneous state in the bias field h0 = n̄. The obtained

sonic curve is in good agreement with MV = 1, shown in Fig. 2(b) by red circles.

We now explore the effect of finite-sized obstacles on a UHS. As observed in BECs,

obstacles can generate vortices, wavefronts, and DSWs in a fluid flow [20–22]. Note

that wavefronts, i.e., “spin-Cerenkov” radiation, were previously observed via

micromagnetic simulations in homogeneous (ū = 0), thick ferromagnets in

the moving reference frame (V̄ 6= 0) [52]. The wavefronts studied here are

different, resulting from both moving (ū = 0, V̄ 6= 0) and static (ū 6= 0, V̄ = 0)

reference frames; yet another manifestation of broken Galilean invariance.

We illustrate these features with simulations where α = 0.01 and local dipolar fields are

included, shown in Fig. 3 as a grayscale map and vector field for n and u, respectively

[see Supplement for the corresponding in-plane magnetization map] . First, we
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consider the subsonic conditions x1 of Fig. 2(a) for a SDW in the static reference

frame (n̄, ū) = (0.1, 0.4) with a magnetic defect within a circular area of π/ū in diameter.

The static configuration in Fig. 3(a) is analogous to Bernoulli’s principle for laminar flow.

A different situation occurs at supersonic conditions x2 (n̄, ū) = (0.7, 0.6), Fig. 3(b).

Here, the density develops a distinct Mach cone (dashed), delimiting static wavefronts and

the nucleation of propagating vortex-antivortex pairs, shown far from the defect in Fig. 3(c).

In the moving reference frame, a homogeneous state is perturbed by a moving,

weak, localized field. Utilizing the subsonic conditions x3 (n̄, ū, V̄ ) = (0.7, 0, 0.6), the flow

is laminar, Fig. 3(d) [c.f. supersonic x2 in Fig. 2(a)]. Wavefront radiation outside the

Mach cone is observed for the supersonic condition x4 (n̄, ū, V̄ ) = (0.7, 0, 1.1) in Fig. 3(e).

However, the field spot amplitude is too weak to excite vortex-antivortex pairs. Animations

are in Supplementary Videos 3 to 6.

The MI regime for UHSs with |ū| > 1 exhibits a violent instability (see Supplementary

Video 7). Notably, for a uniaxial ferromagnet with σ = −1, MI is always operative. This is

consistent with the focusing of spin waves and the formation of dissipative droplets in spin

torque devices utilizing materials with perpendicular magnetic anisotropy [4–7].

We now discuss an experimental test for the hydrodynamic predictions. As mentioned

above, the dispersion relation Eq. (8) features a spectral shift with non-zero fluid velocity.

This shift can be observed e.g., by means of Brillouin light scattering (BLS), as already

shown for Dzyaloshinskii-Moriya interactions [46]. For a given fluid velocity, the magnitude

of the shift, 2n̄ū, can be tuned by an externally applied field. Use of such tuning, in com-

bination with BLS, will allow a direct test of the predicted breaking of Galilean invariance,

insofar as the nonlinear properties of the dispersion relation Eq. (8) can be quantitatively in-

vestigated. In particular, if one plots spin-wave frequency vs. wavenumber squared for both

the Stokes and anti-Stokes BLS peaks in the short-wavelength limit, |k| � (1− n̄2)(1− ū2),

the modulus of the zero-wavenumber intercepts from linear regression will not be equal in

the case of broken Galilean invariance, in contrast to the case of Galilean invariance, where

the intercepts should be equal.

In summary, the dispersive hydrodynamic (DH) formulation permits us to quantify

the manner in which thin film ferromagnets lack Galilean invariance in the

context of linear spin wave propagation on a dynamic UHS or static SDW

background . The breaking of Galilean invariance is often associated with relativistic phe-
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nomena wherein the Lorentz transformation conjoins space-time into a single coordi-

nate system, replacing the Galilean transformation. Instead, the present case ultimately

reflects the counterintuitive ability of exchange-coupled, topological spin textures to support

spin currents, even in the static case. The predictions are robust to damping, non-local dipo-

lar fields, and finite temperatures for a large portion of phase space. The exact representation

of the LL equation in DH form along with associated mathematical tools [23, 31, 48] en-

ables new magnetodynamic predictions and a frontier of magnetic research, for example the

observation of a Mach cone, wavefronts, and vortex nucleation, suggesting the existence of

coherent structures such as oblique solitons and DSWs.
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