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We compute fluctuation-induced (Casimir) forces for classical systems after a temperature quench.
Using a generic coarse-grained model for fluctuations of a conserved density, we find that transient
forces arise even if the initial and final states are force-free. In setups reminiscent of Casimir
(planar walls) and van der Waals (small inclusions) interactions, we find comparable exact universal
expressions for the force. Dynamical details only scale the time axis of transient force curves. We
propose that such quenches can be achieved, for instance, in experiments on active matter, employing
tunable activity or interaction protocols.
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Fluctuation-induced forces [1] are well-known for quan-
tum electromagnetic fields [2, 3], as well as a host of
classical systems [4–10]. At thermal equilibrium with an
infinite correlation length in the medium (e.g. near a
critical point [4]), the force F per area A between two
parallel plates at a distance L in d = 3 dimensions takes
the general form

F

A
∝ kBT

L3
, (1)

in the classical limit (with Boltzmann’s constant kB
and temperature T ). Prefactors, which may depend on
boundary conditions, are typically of order unity.

Various non-equilibrium aspects of fluctuation-induced
forces in electromagnetic [11, 12] and thermal sys-
tems [13–18] have been explored. Particularly intrigu-
ing are long-ranged forces appearing in non-equilibrium
situations where a corresponding force is absent in equi-
librium. These arise due to dynamic conservation laws,
which generally produce long-ranged correlations out of
equilibrium [19]. Examples include fluids subject to
gradients in temperature [20], particles diffusing in a
density gradient [21], and driven systems [22–24]. The
corresponding non-equilibrium forces are generally non-
universal and depend on dynamical details.

In this paper, we consider the stochastic dynamics of
a conserved field (density) in systems exhibiting short-
ranged (local) correlations in steady state. We find that
changing the noise strength results in transient forces at
intermediate times, described by the universal, detail-
independent form of Eq. (1) (for parallel surfaces), but
with a time-dependent amplitude. The latter is governed
by a time scale set by the diffusivity of the field. For the
case of small objects immersed in the medium, the force
resembles classical (equilibrium) van der Waals interac-
tions. Correlations again become short-ranged at long
times, and long-ranged forces decay with power laws in
time. The model is mathematically equivalent to the
well-known “model B” [25–27] dynamics. Therefore we

shall refer to the strength of the noise as temperature,
and to the protocol for changing the strength of noise as
a quench. Since this description arises naturally upon
coarse-graining generic systems without long-ranged cor-
relations, we expect the results to be observable in a va-
riety of setups. Notably, these include certain cases of
active matter, as discussed later in the manuscript.

Consider a classical system (e.g. a fluid in equilibrium,
shaken granular matter, or active particles) characterized
by a local density c(x), fluctuating around an average
value of 〈c(x)〉 in d spatial dimensions, x ∈ Rd. For a con-
served density the fluctuating field φ(x) = c(x)− 〈c(x)〉
is constrained to evolve according to ∂tφ(x, t) = −∇ · j.
The current j is comprised of a deterministic compo-
nent jd, and a stochastic component js. The former
originates from the interactions amongst the microscopic
constituents (including any obstacles), the latter from
thermal fluctuations or random changes in active driving
forces. Both contributions can be complex at the micro-
scopic level. However, for short-ranged interactions, sim-
plified descriptions can be obtained by coarse-graining
beyond relevant length scales, e.g. the correlation length
for fluids, or the so-called run length for active Brown-
ian particles. Symmetry considerations then restrict the
deterministic current to

jd = −µ∇[m(x)φ(x, t) + · · · ], (2)

where we have allowed for a non-uniform “mass” m(x) to
later account for inclusions and boundaries in the field.
Higher order terms in φ and ∇φ can be added, but will
be irrelevant at large length scales (as seen e.g. from
dimensional analysis [26]). This leads to the stochastic
diffusion equation [26],

∂tφ(x, t) = µ∇2[m(x)φ(x, t)] + η(x, t) . (3)

The noise has zero mean, and its contribution to the
above equation has covariance

〈η(x, t)η(x′, t′)〉 = −2D∇2δd(x− x′)δ(t− t′). (4)
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Equations (3) and (4) are equivalent to “model B” dy-
namics of a field subject to a local Hamiltonian [26, 27],
H[φ] =

∫
ddx m(x)

2 φ2(x), and a “mobility” µ. This equiv-
alence indicates that the correlation functions in steady
state satisfy 〈φ(x)φ(x′)〉 = δd(x − x′) D

µm . This corre-
sponds to the equilibrium ensemble with the Boltzmann
distribution, Peq ∝ exp(−H[φ]/kBT ), provided that the
noise satisfies the Einstein relation D = µkBT . The mass
m is thus a measure of (in)compressibility of the density
field. For active systems, we can adopt the same nota-
tion, but with an effective temperature. For example, ac-
tive Brownian particles (coarse-grained beyond the run
length) can in many aspects be described by Eqs. (3)
and (4) with an effective temperature [28], related to the
self-propulsion velocity, that can be orders of magnitude
larger than room temperature. We therefore assume that
in these cases forces are found equivalently (see below).

Long-ranged fluctuation-induced interactions occur
if inclusions disrupt long-ranged correlations in the
medium [1]. Since correlations of the field φ in steady
state are local, no long-ranged steady state Casimir
forces are expected. We investigate what happens if
the stochastic force is suddenly changed, specifically in a
quench at time t = 0 from an initial state with φ = 0 [16],
to a finite ‘temperature’ T (or finite D).

Consider first two parallel, impenetrable plates (as in
the inset of Fig. 1) inserted in a medium with uniform
mass m0. Impenetrability gives rise to no-flux bound-
ary conditions, so that the normal component of the
total current j vanishes at all times on the surfaces of
the plates, situated at z = 0 and z = L [29, 30].
This is guaranteed by constraining φ to Neumann modes
φn ∝ cos(knz) with kn = nπ/L, n = 0, 1, · · · , for z nor-
mal to the surfaces. (Coordinates parallel to the sur-
face are denoted as x‖ ∈ Rd−1.) A similar decomposi-
tion also ensures the no-flux condition for the stochas-
tic current. A straightforward computation yields the
time-dependent (transient) field correlations for z and z′
between 0 and L,

〈φ(z, t)φ(z′, t)〉 =
2kBT

m0L

∞∑
n=0

Nn cos(knz) cos(knz
′)

×
∫

dp
1− e−2(k2n+p2)µm0t

(2π)d−1
, (5)

where p ∈ Rd−1 is the Fourier vector conjugate to x‖, and
Nn = 1 − 1

2δn,0. For fundamental fields such as electro-
magnetism, forces can be obtained from the stress tensor.
Applicability of such a procedure to coarse-grained fields
describing a system out of equilibrium is debatable, but
Ref. [16] provides a general and powerful scheme, applied
to systems with infinite equilibrium correlation lengths,
subject to non-conserved dynamics. This scheme is not
directly applicable here, since we use (no-flux) bound-
ary conditions, as opposed to introducing terms in the
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FIG. 1. The transient force F between two parallel plates
from Eq. (7), as a function of rescaled time t∗ = µm0tL

−2.
The dotted lines indicate the long-time asymptotes. The force
is always attractive.

Hamiltonian that mimic the obstacles. We use actio et
reactio, and find the force acting on the medium instead.
Introducing an external pseudo-field which balances the
deterministic current jd [31] in Eq. (3), we find the force
density f acting on the field, f = φjd/µ. The force per
area Ad−1 acting on the wall at z = 0 (which is minus
the force acting on the medium) then reads

F (t)

Ad−1
= −m0

2

[
〈φ2(z = 0, t)〉 − 〈φ2(z = 0, t)〉L→∞

]
. (6)

The second term, evaluated for L → ∞, represents the
pressure on the plate from the medium outside the cav-
ity. This way of computing forces agrees with the non-
equilibrium stress tensor found in Ref. [31]. Note that
the equilibrium force is exactly zero as the corresponding
correlation function is independent of L, and cancels out
in Eq. (6).

The time-dependent correlation function in Eq. (5) ex-
hibits a trivial divergence for all times t > 0, correspond-
ing to the δ-function form of the local correlation func-
tions. However, this divergence does not contribute to
the net force, and is removed when taking the difference
in Eq. (6). The resulting force takes a universal form in
terms of the rescaled time t∗ = µm0t/L

2,

F (t)

Ad−1
=
kBT

Ld

ϑ3

(
0, e−

1
2t∗

)
− 1

(8πt∗)d/2
, (7)

where ϑ3(0, q) = 1 + 2
∑∞
n=1 q

n2

is the Jacobi elliptic
function of the third kind [32]. This is our first main re-
sult. The force in Eq. (7) is the product of two factors.
The second, time-dependent factor is free of units, and
is shown in Fig. 1 for d = 2 and d = 3 [33]. In both
the φ = 0 state before the quench (t < 0), as well as
for asymptotically long times after the quench (t→∞),
the force vanishes due to the locality of the correlations.
However, there is a finite and attractive transient force at
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intermediate times. At short times, the series for ϑ3 in-
dicates a leading essential singularity F ∼ e− 1

2t∗ /(t∗)d/2.
The force reaches a maximum at t∗ ≈ 1

2 , in a time scale
set by diffusion across the separation L [16]. For long
times ϑ3 grows as

√
t∗, leading to a power law decay of

the force as (t∗)−(d−1)/2. This scale-free decay is associ-
ated with relaxation of the unbounded modes (parallel to
the surfaces as well as in the semi-infinite system faced
by the outside surfaces).

The overall amplitude in Eq. (7) has the form of
Eq. (1), which describes equilibrium forces in scale free
media. Thus, strikingly, and in contrast to previously
found non-equilibrium Casimir forces, the amplitude of
the force is independent of (dynamical) details of the sys-
tem. These enter only in the scaling of t∗ so that, for
different systems, merely the time axis is rescaled. Spe-
cific comparison to the equilibrium force of a Gaussian
critical theory with Hamiltonian H[φ] =

∫
ddx r

2 (∇φ)2

(and Dirichlet boundary conditions) shows that the max-
imum of the transient force computed here is very simi-
lar, smaller by a factor of 0.39 (d = 2) and 0.48 (d = 3).
Since equilibrium fluctuation-induced forces have been
measured in various systems (see e.g. Ref. [5]), we ex-
pect the transient forces to be measurable as well (even
when not accounting for the much larger expected effec-
tive temperatures).

As a second example, consider the transient force be-
tween two embedded inclusions which are small in rela-
tion to their separation in the medium, and have volumes
V1 and V2. The inclusions are modeled by “compressibil-
ities” deviating by ci from the surrounding medium, i.e.,

m(x) =

{
m0, x /∈ Vi,
m0 + ci, x ∈ Vi.

(8)

This case is well-suited to the formalism developed in
Ref. [16], where the force is found from F (t) = −〈∂H(t)

∂L 〉,
with L being the center-to-center distance of the ob-
jects. Solving the linear Langevin Eq. (3) in Laplace
space [34], treating the external bodies as perturbations
to the bulk, an intriguing connection is observed [16]: just
as in equilibrium, the force between embedded objects is
related to the bulk correlation function of φ. However,
in the non-equilibrium case, this relation is formulated
in Laplace space. Specifically, in the limit where the dis-
tance L is large compared to the extension of the objects,
L� V

1/d
i , the Laplace transformed average force is [16]

LF (s) = kBT
c1V1
m0

c2V2
m0

1

s
Gs(L)∂LGs(L). (9)

Here Gs(X) = L[〈φ(0, t)φ(X, t)〉](s) is the Laplace trans-
form of the transient (post-quench) equal-time correla-
tion function for two points separated by a distance X
in the medium. The correlation functions in d = 1 and
d = 3 have the explicit forms (note that this is the same
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FIG. 2. The force (Eq. (11)) between two embedded objects,
which are small compared to their separation, as a function of
dimensionless time t∗ = µm0tL

−2. Dotted lines in the insets
are long-time asymptotes as given.

quantity as in (5) but for L→∞)

〈φ(0, t)φ(X, t)〉 =

−
kBT
m0X

e
− 1

8t∗

(8πt∗)1/2
, d = 1,

− kBT
m0X3

e
− 1

8t∗

(8πt∗)3/2
, d = 3,

(10)

with t∗ = µm0t/X
2. These expressions are quite similar

to the force between two surfaces in Eq. (7). Indeed,
the nature of this correlation function is the origin of
the transient forces: starting from zero, it approaches a
maximum, set by the time necessary for diffusion across
the distance X, and decays with a power law for t →
∞. Its Laplace transform, Gs(X) ∝ e−X

√
s/2m0µ, is also

illustrative, with
√
s/2m0µ playing the role of an inverse

correlation length. For small s (large times), correlations
are long-ranged, while for large s (short times) they are
exponentially cut off, since distant points have not yet
communicated via diffusion. Technically, the long-ranged
character of the transient correlation function enters via
the inverse of the Laplacian in Eqs. (3) and (4); e.g., in
d = 3, [∇2δ3(x− x′)]−1 = − 1

4π|x−x′| .
Laplace inversion of Eq. (9) yields the transient force,

which reads (we define αi = ciVi/m0)

F (t) = kBT
α1α2

L2d+1
Ξd(t

∗) , (11)

with Eq. (10) leading to the time-dependent amplitude

Ξd(t
∗) = e−

1
2t∗ ×

{ (1−t∗)
16
√
2π(t∗)5/2

, d = 1,
[1−t∗(3t∗+4)]

256
√
2π5/2(t∗)9/2

, d = 3.
(12)

As in the case of parallel surfaces, the force between small
objects (depicted in Fig. 2) rises from zero and reaches a
maximum (here at t∗ ≈ 0.15). However, in sharp contrast
to the former, the force changes sign from attractive at
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short times to repulsive at long times at around t∗ ≈ 1.
This can be interpreted as the effect of back-flow from the
diffusive front of fluctuations which passes beyond the in-
clusions at t∗ ≈ 1. In the case of parallel plates, fluctua-
tions are confined and cannot pass beyond the obstacles.
The long-time decay of the force is a manifestation of the
well-known long-time correlations in conserved dynamics
(cf. Eq. (10)).

Just as in the case of parallel plates, the overall am-
plitude of the force between inclusions is independent of
dynamical details, which only scale the time axis. Fur-
thermore, the force in Eq. (11) resembles the van der
Waals force between two particles with polarizabilities αi
in the classical limit [35]. Hence, as the force in Eq. (7),
it acquires a very well-known and studied form. The no-
tation αi = ciVi/m0 is also motivated by this analogy,
and just as in the case of (electromagnetically) polariz-
able particles, αi is proportional to the particle’s volume
and (optical or compressibility) contrast [36]. Finally, we
comment that this analogy carries a practical message:
αi in Eq. (11) is related to the perturbative solution of
Eq. (3) for a single object i in isolation. It can thus be
measured independently in a “scattering” experiment, so
that αi is not a free fit parameter when applying Eq. (11)
in a given experiment.

The temperature quench investigated here can be re-
alized experimentally in various ways. In addition to di-
rectly changing temperature, there are various experi-
mental techniques to rapidly change interparticle poten-
tials. Such changes (e.g. from hard to soft) in compress-
ibility have the same effect as a temperature quench:
initially, fluctuations are suppressed (〈φφ〉 ≈ 0), and
then suddenly start growing, giving rise to the phe-
nomena analyzed here. Examples of tunable interpar-
ticle potentials include thermosensitive particles whose
radii change strongly over a very small temperature
range [37], or magnetic nano-colloids whose interactions
can be strongly tuned with an externally applied mag-
netic field [38].

A particularly timely class of experimental candidates
concerns the aforementioned active matter systems with
effective temperatures [28]. Importantly, activity can of-
ten be tuned externally, for instance for Brownian par-
ticles with tunable illumination-induced activity [39], or
agitated granular beads [40, 41], so that quenches can be
applied easily. It is also relevant that effective tempera-
tures of such systems are often much larger than exper-
imental (room) temperatures. This acts in favour of the
forces in Eqs. (7) and (11), which are proportional to the
(effective) temperature.

To conclude, classical systems with a conserved density
undergoing temperature quenches (or changes in noise
or activity) show transient Casimir forces with univer-
sal amplitudes, analogous to equilibrium forces in scale
free media. Dynamical details scale the time axis of the
forces, which are maximal at a time corresponding to dif-

fusion across distances between obstacles. The transient
forces depend on the history of quenching. Therefore it
may be possible to generate persistent non-equilibrium
forces through periodically varying temperature proto-
cols; this will be addressed in future work. The methods
presented here can be adapted to various geometries and
a broad class of non-equilibrium systems.
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