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We develop a model that establishes a quantitative link between the physical properties of molec-
ular aggregates and their constituent building blocks. The relation is built on the coherent potential
approximation, calibrated against exact results, and proven reliable for a wide range of parameters.
It provides a practical method to compute spectra and transfer rates in multi-chromophoric sys-
tems from experimentally accessible monomer data. Applications to Förster energy transfer reveal
optimal transfer rates as functions of both the system-bath coupling and intra-aggregate coherence.
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Molecular self-assembly is used in Nature to build
complex structures and regulate material properties [1],
and can also be exploited for the fabrication of versa-
tile nanostructures [2]. The spatial arrangement of chro-
mophoric building blocks strongly influences the elec-
tronic distribution [3], enabling a broad range of optical
and transport properties [4]. Nature has mastered this
art, evolving from a very limited number of monomers
an impressive diversity of photosynthetic light-harvesting
complexes [5], which are known to be highly versatile [6]
and efficient in absorbing sunlight and transferring the
subsequent excitation [4, 7]. Understanding the sensitive
interplay between monomer and super-structure (com-
posed of monomers), and its influence on the optical,
electronic and transport properties is highly desirable for
the synthesis of new materials [3], the design and opera-
tion of organic-based devices [8], including solar cells [9],
transistors, light-emitting diodes [10] and flexible elec-
tronics [11]. Yet despite its fundamental role, the rela-
tionship between molecular super-structure and physical
properties lacks systematic quantitative understanding.
In this Letter, we derive such a quantitative method, by
establishing the relation between the aggregate spectra
and its constituent monomer building blocks; we further
calibrate it against exact results, and apply the theory
to the important dynamical process of resonant energy
transfer.

Optical excitations of organic compounds involve both
electronic and vibrational degrees of freedom [12]. While
the exciton-phonon interaction is well understood for
monomers [13–15], the electronic coupling in super-
structures such as multi-chromophoric (MC) complexes
delocalizes the excitation [16] and therefore requires the
treatment of electron-vibrational coupling, excitonic cou-
pling and disorder on an equal footing [17]. The avail-
able techniques, either exact such as stochastic path in-
tegral (sPI) [18] and hierarchical equation of motions
(HEOM) [19–21], or approximate such as Full-Cumulant-
Expansion (FCE) [22], 2nd-order time-convolution [23],
time-convolutionless [24, 25] and other recent develop-

ments [26, 27], are computationally expensive and not
universally applicable to relate the structure to optical
properties. These treatments require microscopic Hamil-
tonians and thus are not explicit about the structure–
spectra relation. Our approach establishes such a rela-
tion: it allows to predict the physical properties of com-
plex structures or, conversely, infer the structure from its
measured properties.

While construction of the optical properties is impor-
tant in its own right, the spectra also provide addi-
tional transport information. The transfer rates between
weakly coupled excitonic systems can be obtained from
the overlap of the donor emission and acceptor absorption
spectra using Förster resonant energy transfer (FRET)
[28]. The original FRET theory describes the environ-
ment through its effect on the monomer spectra. Exten-
sions to MC systems [29–32], where the donor/acceptor
are composed of coupled chromophores, demonstrated
that the far-field linear spectroscopic line shapes are in-
sufficient; rather, the near-field, polarization-resolved ag-
gregate spectra are needed to obtain the MCFT (MC
Fluorescent Transfer) rate in general. Though nonlin-
ear spectroscopic experiments [33] could in principle be
used, the required information is not accessible with cur-
rent experimental techniques [32]. The theory developed
here solves this problem, allowing for the construction of
the aggregate spectra from the experimentally accessible
monomer spectra.

Our model is based on the coherent potential approx-
imation (CPA) [34]: it treats the vibrational coupling
exactly at the monomer level and includes all orders of
electronic coupling, treated exactly up to the second or-
der and approximately for higher orders. Benchmarks
against exact sPI [18] and FCE [22] calculations show
that our model is reliable over a wide range of param-
eters. Our theory applies to MCFT and recovers some
aspects of the classical treatments [35–38] as a limiting
case. It completes the series of papers quantifying the
reliability of different quantum models in MC systems
[18, 22, 39].
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Monomer spectra.— We introduce the notation and
exact formulation of monomer spectra using the inde-
pendent boson model [14]. Consider a single monomer
coupled to a thermal phonon bath, both labeled by n,
and characterized by the spin-boson Hamiltonian

H
(n)
0 = H

(n)
0S +H

(n)
B +H

(n)
SB , (1)

where H
(n)
0S = EnB

†
nBn denotes the Hamiltonian of

the electronic system, H
(n)
B =

∑
k ~ωn,kb

†
n,kbn,k that

of the bath, and H
(n)
SB = B†nBn

∑
k gn,k(b†n,k + bn,k)

their coupling, which is taken linear in the bath co-
ordinate. The operator B†n creates an excitation on

monomer n, forming the state B†n |vac〉 = |n〉; b†n,k cre-
ates a phononic excitation in mode k. The excited state
energy En = ~ω0

n + λn includes the reorganization en-
ergy λn =

∑
k gn,k/ωn,k. Interaction with the elec-

tric field is treated semi-classically through the system-

radiation interaction Hamiltonian H
(n)
SR = µ̂n ·Eê, where

µ̂n = ~µngB
†
n + h.c. denotes the transition dipole moment

operator and ê is a unit vector.
Following Sumi [34], we use the retarded Green’s func-

tion [14] associated with the monomer Hamiltonian (1),

G0nn(t) = − i
~

Θ(t)e
i
~H

(n)
0 tBn e

− i
~H

(n)
0 tB†n, (2)

to define the optical spectra—all given in units of en-
ergy here. The absorption spectrum is obtained from
the imaginary part of the Green’s function averaged over
the phonon bath,

〈
G0nn(ω)

〉
g
, where 〈•〉g ≡ TrB [•ρ0g] de-

notes the trace over the bath using the density matrix of
the system-bath in its ground state, ρ0g. The experimen-
tally accessible spectrum includes the dipole transition,

I
(n)
exp(ω) = (ê · ~µgn) I

(n)
0 (ω) (~µng · ê), where

I
(n)
0 (ω) = −2Im

∫ ∞
−∞

dt eiωt TrB
[
G0nn(t)ρ0g

]
. (3)

This monomer spectrum can be evaluated exactly as
follow. Assuming a Franck-Condon transition from the
ground state, the initial state can be taken as the factor-

ized state ρ0g = 1S⊗ρB , where ρB = e−βH
(n)
B /Tr[e−βH

(n)
B ]

is the bath density matrix at equilibrium, with β−1 =
kBT . For a harmonic bath at thermal equilibrium, the
absorption lineshape (3) is exactly

I
(n)
0 (ω) =

2

~
Re

∫ ∞
0

dt eiωte−iωngte−gn(t), (4)

where ωng ≡ (En − Eg)/~ and Eg denotes the elec-
tronic ground state energy. The lineshape function
gn(t) =

∫ t
0
dτ1
∫ τ2
0
dτ2Cn(τ2) is obtained from the bath

auto-correlation function Cn(τ) = 1
~2 〈H(n)

SB (τ)H
(n)
SB (0)〉,

and can be evaluated exactly assuming a Drude spectral
density, C ′′n(ω) ≡ 2λnΛω/(ω2 + Λ2), with Λ the cut-off
frequency [13].

Steady-state emission occurs after the entire system-
bath has equilibrated within the single-exciton manifold
and is obtained from

〈
G0nn(ω)

〉
e
, with 〈•〉e ≡ TrB [•ρ0e].

The initial state ρ0e entering the averaged Green’s func-
tion is not factorized anymore, and the system-bath en-
tanglement needs to be considered [22]. Instead of a di-
rect calculation, we follow [18, 25, 29] and use the detailed
balance condition [40] to obtain the emission spectrum
from the absorption,

E
(n)
0 (ω) =

eβ~ω

Z(n)
I
(n)
0 (ω), (5)

where Z(n) = Tr[e−βH
(n)
0S e−βH

(n)
B ] is the monomer parti-

tion function.
Multi-chromophoric spectra.— Consider now a system

of N coupled chromophores described by

H = H0 + V, (6)

where H0 =
∑N
n=1H

(n)
0 is the sum over N independent

monomers (1), which includes exciton-phonon interac-
tion, and V =

∑
n 6=m VnmB

†
nBm characterizes the inter-

monomer coupling, typically of dipole-dipole nature. The
operator B†n now denotes excitation of the n-th monomer
exclusively. Interaction with light is now characterized by

HSR =
∑
nH

(n)
SR . We denote G and G0 the N × N ma-

trices formed by the Green’s functions associated respec-
tively with the total Hamiltonian H and the unperturbed
Hamiltonian H0, which matrix elements are

Gnn′(t) = − i
~

Θ(t)e
i
~HtBn e

− i
~HtB†n′ (7a)

G0nn′(t) = − i
~

Θ(t)e
i
~H0tBn e

− i
~H0tB†n′ . (7b)

Note that the diagonal elements of G0 are equal to
the monomer Green’s functions (2). In principle, the
MC Green’s function G can be exactly expressed using
the unperturbed Green’s function G0 and the self en-
ergy according to Dysons’ equation [14]. Tracing over
the phonon bath would then provide the MC absorp-
tion and emission tensors, I(ω) = −2 Im 〈G(ω)〉g and
E(ω) = −2 Im 〈G(ω)〉e, respectively. However, while an
exact solution exists for single monomers (1), the inter-
monomer coupling V in MC systems (6) tends to delocal-
ize the electronic excitation and mix the vibrational and
electronic degrees of freedoms. Evaluating the trace then
requires methods numerically expensive [18], and often
approximate [22, 39].

The approximate theory derived here provides an ana-
lytical expression in terms of the constituent spectra and
structural properties, allowing for an explicit relation be-
tween the optical properties and the structure. Using
the integral representation of the exponential, the bath-
averaged total Green’s function can be expanded, in the
time or frequency domain, as [41]

〈G〉 = 〈G0〉+ 〈G0V G0〉+ 〈G0V G0V G0〉+ . . . , (8)



3

where the brakets denote the trace over the bath and the
subscript (g or e) characterizing the initial state will be
specified as needed. The zero-th order term is simply the
diagonal matrix of the monomeric Green’s function (2)
with the proper initial state, i.e. 〈G0〉g/e = (〈G0nn〉g/e).
The first-order term can be evaluated exactly for the fac-
torized initial state, 〈•〉g, because (i) the trace then com-
mutes with the bath density operator, (ii) there is one
and only one electronic transition involved and (iii) the
individual baths are uncorrelated. The trace can thus be
split exactly,

〈G0V G0〉g = 〈G0〉gV〈G0〉g, (9)

where V = (Vnm) is a tensor. For the second-order term
in (8), we neglect the phonon correlations and take〈

G0nn(ω)G0nn(ω)
〉
g
≈
〈
G0nn(ω)

〉
g

〈
G0nn(ω)

〉
g
. (10)

This approximation is analogous to the decoupling
scheme used in the single-site dynamical coherent po-
tential approximation (CPA) [15] and will be referred as
such. It is the main approximation here, yielding to our
key result. It allows simplifying all higher orders such
that the full Green’s function (8) with the initial ground-
state density matrix reduces to:

〈G(ω)〉g ≈

〈
G0(ω)

〉
g

1N −V 〈G0(ω)〉g
. (11)

The CPA approach treats the bath coupling exactly at
the monomer level. It is exact up to the second-order of
intra-aggregate coupling V and includes all higher orders
approximately. As such, our approach is more robust
than other methods derived for weak coupling [42, 43],
especially in highly delocalized cases.

The MC absorption tensor is then simply

ICPA(ω) = −2 Im

〈
G0(ω)

〉
g

1N −V 〈G0(ω)〉g
. (12)

The far-field, measurable absorption spectrum, is given
by Iexp(ω) =

∑
nn′(ê · ~µn) Inn′(ω) (~µn′ · ê). Note that,

in calculating the full MC tensor, the CPA requires
knowledge of both the real and imaginary parts of the
monomeric Green’s function

〈
G0(ω)

〉
g
. The latter is ac-

cessible experimentally through the absorption spectra
of the constituent monomers and their transition dipole
moments; the real part is related through the Kramer-
Kronig relation [13]. The CPA approach therefore al-
lows constructing the MC absorption tensor (12) from
its monomer features, either experimentally or theoreti-
cally accessible. Also, we show in [41] that (12) reduces
to the tensor derived from a classical picture of oscil-
lating dipoles [37, 38], when the coupling is restricted to
dipole-dipole interaction. This suggests that the CPA ap-
proximation (10) is implicit in the classical electrostatic
treatment of absorption [44].
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FIG. 1. Comparison of models for MC absorption Iexp(ω) and
emission Eexp(ω) spectra, for (a) localized and (b) delocalized
dimers. Absorption (12) obtained from the CPA treatment
developed here well matches sPI exact [18] and FCE approx-
imate [22] results; emission spectra (13) resemble the sum of
the individual spectra (not shown here), and are not accurate
for large inter-chromophore couplings (b). Adding detailed
balance, the CPADB (14) provides accurate results over a wide
range of couplings. The difference between CPA and CPADB

displays the influence of the system-bath entanglement, which
is important for emission. Parameters correspond to (a) case
I (V = 20 cm−1, ∆E21 ≡ E2−E1= 100 cm−1) and (b) case II
(V = 100 cm−1, ∆E21 = 20 cm−1) in [22] with λ=100 cm−1,
Λ=53 cm−1, T=300 K, and ê along ~µ.

Direct application of the CPA (10) with (g → e) yields
the emission tensor

ECPA(ω) = −2 Im

〈
G0(ω)

〉
e

1N + V 〈G0(ω)〉e
, (13)

where the initial density matrix is the equilibrium state
in the first-excited manifold ρ0e. Because of the initial
system-bath entanglement, the separation of averaging
(9) with (g → e) is no longer exact, and the CPA is ap-
proximate already in the first order of V for the emission
tensor. Numerical simulations show that the prediction
is similar to the sum of the monomer emission spectra
(5), and therefore deviates from the exact solution for
strong coupling (Fig. 1b). Instead of (13) and similarly
to the monomer treatment (5), we calculate the emission
tensor from the detailed balance (DB), which applies to
the total system as

E(ω) =
eβ~ω

Tr[e−βH ]
I(ω). (14)

We label this emission tensor by ‘CPADB’ when using
(12) for the absorption tensor I(ω). The normalization
factor can be obtained either from direct sPI calculation
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[45] or from the absorption spectrum using the mirror
property of the spectra, i.e. E(ω0 − λ − ω) = I(ω0 +

λ+ ω)/Z0S where Z0S ≡ Tr(e−β
∑

nH
(n)
0S ) is given by the

monomer system Hamiltonian [13, 18]. The emission
spectrum is then Eexp(ω) = ê · (~µT .E(ω).~µ) · ê.

Fig. (1) presents the absorption and emission spec-
tra for the two dimers detailed in [22], i.e. for weak and
strong inter-chromophore coupling V . It is shown that
the proposed treatment (Eqs. 12-14) provides accurate
predictions for both spectra, even for relatively strong
coupling—V/λ = 1 in Fig. (1b). The CPA with detailed
balance (14) greatly enhances the results over the CPA
only (13), thereby showing the importance of the bath’s
first-order correlation function when the initial state is
the system-bath entangled density matrix. Comparisons
with the FCE over a wider range of parameters are pre-
sented in [41].

Application to energy transfer rate.— Knowledge of
the spectral tensors allows for the determination of the
transfer rate between a donor (D) and an acceptor (A)
aggregate using Fermi’s golden rule. We consider a sys-
tem of M -coupled donor and N -coupled acceptor chro-
mophores described by the total Hamiltonian

HAD = HA +HD + JAD, (15)

where the MC Hamiltonian of the donor HD = HD
0 +

V D and that of the acceptor HA = HA
0 + V A is de-

scribed by (6), changing Bn → Dn(An), respectively,
and where the inter-chromophore coupling is V D =∑M
m 6=m′ V Dmm′D†mDm′ and V A =

∑N
n6=n′ V Ann′A†nAn′ .

JAD denotes the coupling between the donor-acceptor
chromophores, i.e. JAD =

∑N
n

∑M
m JADnmA

†
nDm + h.c.

The operators D†m and A†n respectively denote excitation
of the donor monomer m and the acceptor monomer n.

The rate of Multi-Chromophoric Förster Resonant En-
ergy Transfer (MCFT) is given by the overlap of the emis-
sion and absorption tensors [22, 25, 32],

k =

∫ ∞
−∞

dω

2π
Tr
[
JTED(ω)J IA(ω)

]
, (16)

where the matrix J = (JADnm ) denotes the donor-acceptor
coupling strength. The emission and absorption tensors,
respectively ED(ω) = (EDmm′(ω)) and IA(ω) = (IAnn′(ω)),
are the polarization-resolved near-field spectral compo-
nents, which are known to be necessary in MC systems
for significant intra-donor (V D) or intra-acceptor (V A)
couplings [32].

Using the derived treatment, specifically the CPA ab-
sorption tensor (12) for the acceptor along with the
CPADB emission tensor (14) for the donor, the MCFT
rate becomes

k ≈
∫ ∞
−∞

dω

2π
Tr

[
JT

eβ~ω

Tr[e−βHD ]
2Im

(
〈G0

D(ω)〉g
1M −VD 〈G0

D(ω)〉g

)
×J 2Im

(
〈G0

A(ω)〉g
1N −VA 〈G0

A(ω)〉g

)]
, (17)
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FIG. 2. Energy transfer rate (17) for different bath reor-
ganization energies λ using the developed CPA and CPADB

models to calculate absorption (12) and emission (13, 14) ten-
sors for localized (a) and delocalized (b) systems. Compari-
son with exact sPI results [18] show perfect matching of the
CPADB for small electronic coupling (a), and a slight over-
prediction of the rate for large coupling (b). The error us-
ing only CPA comes from overpredicting the emission ten-
sor (cf. Fig. 1). We used JAD

nm = 10 cm−1; λD = λA and
V A
nn′ = V D

mm′ = V . ∆EA
21 = ∆ED

21 = ∆E21 are as in Fig. (1).

where G0
D (G0

A) is a M ×M (N ×N) matrix formed by
the Green’s functions of the uncoupled monomers con-
stituting the donor (acceptor) aggregate, i.e. defined by
(7b) changing Bn → Dn(An). This rate expression only
requires the monomer bath-averaged Green’s functions
〈G0〉, which includes the system-bath coupling exactly
at the monomer level and can be evaluated exactly for a
thermal bath (4) or determined experimentally. All in-
fluence from electronic coupling is contained in the ma-
trices describing intra-donor VD, intra-acceptor VA and
inter donor-acceptor JAD couplings, and not restricted
to dipole-dipole coupling. The rate (17) is exact up to
second-order in the intra-aggregate couplings V and in-
cludes all higher orders approximately.

Fig. (2) presents the transfer rate for localized and
delocalized donor/acceptor (Cases I&II in [22], respec-
tively) for different reorganization energies λ. Compari-
son with the exact path-integral calculations shows per-
fect agreement for the localized case (2a), and a slight
over-prediction for highly delocalized MC systems (2b).

The simplicity of our approach (17) allows predicting
the transfer rates over a wide range of structural param-
eters. Fig. (3) shows the rate as a function of the re-
organization energy and intra-aggregate coupling V for
systems with different electronic splittings ∆E21. We
clearly see an optimal bath-coupling strength, confirming
environment-assisted quantum transport [46]. Interest-
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FIG. 3. Contour map of the transfer rate as function of the
reorganization energy λ = λA = λD and the intra-aggregate
coupling strength V = V A

nn′ = V D
mm′ . Fig. (a) exhibits an op-

timal intra-aggregate coupling strength around V ∼ 50cm−1,
and (b) clearly shows the optimal bath coupling. The different
behaviors between (a) and (b) steam from different electronic

splitting ∆E
A(D)
12 , respectively (a) 100 cm−1 and (b) 20 cm−1.

ingly, Fig. (3a) also exhibits an optimal intra-aggregate
coherence (V∼50 cm−1), which was not previously re-
ported. The existence of such optimum depends on the
system configuration, as seen from the comparison with
rates in a system with smaller energy gap, Fig. (3b).
While this dependance requires further investigation, our
results confirm that intra-aggregate couplings can en-
hance transfer, which is in line with [32, 37, 47–49].

In summary, we extended the applicability of the CPA
to absorption and emission tensors of multi-chromophoric
systems, and showed accurate results over a surprisingly
wide range of structure parameters. This approach now
allows for a reliable prediction of the MCFT rate, which
reveals that, additionally to optimal environment cou-
plings, the intra-aggregate coupling can be optimized to
enhance transport. Our treatment identifies the correc-
tion terms, and recovers the classical absorption tensor
as a limiting case, suggesting that first-order bath cor-
relations are neglected classically. Our model could be
further extended to include the off-diagonal bath cou-
pling, introduced through electronic coupling, using e.g.
the two-particle dynamical CPA [50].

Beyond fast and reliable characterization of multi-
chromophic complexes, a quantitative relation between
physical properties and aggregate structure is estab-
lished. This straightforward approach is based on spec-
troscopic measurements and does not require a micro-
scopic Hamiltonian. It allows to explore a large space of
structure parameters and optimize the aggregate struc-
ture based on its optical and transport properties. As

such, we anticipate that it will be a relevant tool to exper-
imentally and theoretically describe electronic excitation
and excitonic energy transfer.

Acknowledgments.— We thank P. Brumer for interest-
ing discussions on the topic and A. del Campo for com-
ments on the manuscript. We acknowledge funding from
the Swiss National Science Foundation (A.C.) and the
NSF (grant no. CHE-1112825).

∗ achenu@mit.edu
† jianshu@mit.edu

[1] S. M. Douglas, H. Dietz, and T. Liedl, Nature 459, 414
(2009); G. Mayer and M. Sarikaya, Exp. Mech. 42, 395
(2002); V. Kos and R. Ford, Cellular and Molecular Life
Sciences 66, 311 (2009).

[2] G. Whitesides, J. Mathias, and C. Seto, Science 254,
1312 (1991); S. Zhang, Nat. Biotech. 21, 1171 (2003).

[3] U. Scherf and E. List, Adv. Mat. 14, 477 (2002).
[4] H. van Amerongen, L. Valkunas, and R. van Gron-

delle, Photosynthetic Excitons (World Scientific, Singa-
pore, 2000).

[5] R. J. Cogdell, A. T. Gardiner, H. Hashimoto, and
T. H. P. Brotosudarmo, Photochem. Photobiol. Sci. 7,
1150 (2008).
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